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Abstract. The object of the present paper is to prove that in a Kaehler manifold of dimension n≥ 4, div

R = 0 and div C = 0 are equivalent, where ’div’ denotes divergence and R and C denote the curvature

tensor and Weyl conformal curvature tensor, respectively.
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1. Introduction

Let M be an n-dimensional Kaehler manifold. Then the Kaehler metric g of M satisfies

g(JX , JY ) = g(X , Y ) and ∇J = 0, where J and ∇ denote the complex structure and the

covariant differentiation of M , respectively. Let R, S and C denote the curvature tensor, Ricci

tensor and Weyl conformal curvature tensor of M , respectively. It is well known that a Kaehler

manifold with parallel Ricci tensor is Einstein if M is irreducible. In a Riemannian manifold

it can be easily verified from the differential Bianchi identity that div R = 0 holds if and only

if (∇X S)(Y, Z) = (∇Y S)(X , Z), where ’div’ denotes divergence. It is well known [1] that if

the Ricci tensor S satisfies (∇X S)(Y, Z) = (∇Y S)(X , Z) in a Kaehler manifold, then the Ricci

tensor is parallel. In a Riemannian manifold it is also known [1] that the statements

(i) div R = 0, (ii) div C = 0 and the scalar curvature is constant are equivalent.

In the present paper we prove that in a Kaehler manifold of dimension n ≥ 4, div R= 0

and div C= 0 are equivalent.
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2. Preliminaries

In a Riemannian manifold Weyl conformal curvature tensor C is defined by

C(X , Y )Z = R(X , Y )Z −
1

n− 2
[g(Y, Z)QX − g(X , Z)QY

+ S(Y, Z)X − S(X , Z)Y ]

+
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X , Z)Y ], (1)

where Q is the Ricci operator defined by g(QX , Y ) = S(X , Y ) and r denotes the scalar curva-

ture. It is well known [3] that in a Riemannian manifold of dimension n> 3,

(divC)(X , Y )Z =
n− 3

n− 2
[{(∇X S)(Y, Z)− (∇Y S)(X , Z)}

+
1

2(n− 1)
{dr(X )g(Y, Z)− dr(Y )g(X , Z)}]. (2)

In a Kaehler manifold the following relations hold [5]:

g(X , JY ) = −g(JX , Y ), (3)

S(X , JY ) = −S(JX , Y ), (4)

∇X JY = J∇X Y. (5)

3. Main Result

Theorem 1. Let M be a Kaehler manifold of dimension n≥ 4. Then div R = 0 and div C = 0 are

equivalent.

To prove the theorem we first state and prove the following:

Lemma 1. In a Kaehler manifold (∇ZS)(JX , Y ) = −(∇ZS)(X , JY ) holds.

Proof. In a Kaehler manifold the Ricci tensor S satisfies S(JX , Y ) = −S(X , JY.) Now

(∇ZS)(JX , Y ) = ∇ZS(JX , Y )− S(∇Z JX , Y )− S(JX ,∇Z Y )

= −∇ZS(X , JY )− S(J∇Z X , Y )− S(X , J∇Z Y ), using (5)

= −∇ZS(X , JY ) + S(∇Z X , JY ) + S(X ,∇Z JY ), by (5)

= −(∇ZS)(X , JY ).

This completes the proof.

Lemma 2. In a Kaehler manifold the Ricci tensor S satisfies the condition∑n
i=1(∇ei

S)(JX , ei) =
1

2
dr(JX ), where {ei} is an orthonormal basis of the tangent space at each

point of the manifold.
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Proof. From S(X , Y ) = g(QX , Y ) we easily get [2]

(∇ZS)(X , Y ) = g((∇ZQ)X , Y ). (6)

Replacing X by JX in (6) yields

(∇ZS)(JX , Y ) = g((∇ZQ)JX , Y ). (7)

Putting Y = Z = ei in (7) and taking summation over i, i = 1,2, . . . , n, we get

(∇ei
S)(JX , ei) = g((∇ei

Q)JX , ei).

We know
(divQ)(X ) = tr(Z → (∇ZQ)(X ))

=
∑

i g((∇ei
Q)(X ), ei).

But it is known [4] that (div Q)(X) = 1

2
dr(X ). Hence (∇ei

S)(JX , ei) =
1

2
dr(JX ), which

completes the proof.

Proof. [of the main theorem] Suppose div C = 0. Then from (2) we have

(∇ZS)(X , Y )− (∇X S)(Z , Y ) =
1

2(n− 1)
[dr(Z)g(X , Y )− dr(X )g(Z , Y )]. (8)

It is known [5] that in a Kaehler manifold the Ricci tensor S satisfies

(∇ZS)(X , Y ) = (∇X S)(Z , Y ) + (∇JY S)(JX , Z). (9)

Using (9) in (8) we obtain

(∇JY S)(JX , Z) =
1

2(n− 1)
[dr(Z)g(X , Y )− dr(X )g(Z , Y )]. (10)

Replacing Y by JY in (10) we obtain

−(∇Y S)(JX , Z) =
1

2(n− 1)
[dr(Z)g(X , JY )− dr(X )g(Z , JY )]. (11)

Using (3) and Lemma 1 we get from (11)

(∇Y S)(X , J Z) =
1

2(n− 1)
[dr(Z)g(X , JY ) + dr(X )g(J Z , Y )]. (12)

Taking X = Y = ei in (12) we get

1

2
dr(J Z) =

1

2(n− 1)
dr(J Z)

which implies dr(J Z) = 0, since n ≥ 4. Hence dr(Z) = 0, that is, r =constant. Using

r =constant in (8) we get

(∇ZS)(X , Y ) = (∇X S)(Z , Y ).
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Therefore div R = 0. This completes the proof.

From Theorem 1 and the known result mentioned in the introduction we obtain that if the

conformal curvature tensor is divergence free in a Kaehler manifold of dimension ≥ 4, then

the Ricci tensor is parallel.

Conversely, if the Ricci tensor is parallel, then from (2) it follows that div C = 0. Thus we

conclude that in a Kaehler manifold of dimension ≥ 4, the statements (i) div C = 0 and

(ii) the Ricci tensor is parallel are equivalent.
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