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Abstract: In this note we give new and faster natural realization of Euclid’s Greatest Com-
mon Divisor (GCD) algorithm. The reason of interest in this topic is widely application of this
algorithm in various mathematics and computer science topics [13]. Particularly via Google
you can see that there are more than 400 000 pages indexed for keyword ‘greatest common
divisor’. In our implementation we reduce the number of iterations and now they are 50% of
Knuth’s realization of Euclid’s GCD. For all algorithms we have use the implementations in
Visual C# 2017 programming environment.
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1. Introduction

In all implementations we will use as comment in example a = 420748418; b
= 9659595. All algorithms work correctly for every a>0 and b>0. We will
mention that searching of new modifications of classical algorithms is serious
task see for example our previous work on number of primes [12].

In his book Knuth [13] proposed the following iteration process:
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Algorithm 1.

long a, b, ob, gcd; //a = 420748418; b = 9659595;

while (b > 0) { ob = b; b = a % b; a = ob; }

gcd = a;

which is the most commonly used and can be seen in many sources and books
[3]–[11], [13]–[20].

The following algorithm is given by Schmidt [18]:

Algorithm 2.

long a, b, gcd; //a = 420748418; b = 9659595;

while (a > 0 && b > 0) if (a > b) a %= b; else b %= a;

gcd = a + b;

The next implementation is given by Stepanov [20]:

Algorithm 3.

long a, b, gcd; //a = 420748418; b = 9659595;

while (true) { if (b < 1) { gcd = a; break; }

a %= b; if (a < 1) { gcd = b; break; } b %= a; }

2. Main Results

Now we set the task to optimize all implementations of Euclid’s algorithm. For
testing we will use the following computer: processor - Intel(R) Core(TM) i7-
6700HQ CPU 2.60GHz, 2592 Mhz, 4 Core(s), 8 Logical Processor(s), RAM 16
GB, Microsoft Windows 10 Enterprise x64 in programming environment (see
Fig. 1).
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Figure 1: Visual C# 2017.

We propose the following iteration process after numerous attempts to op-
timize the Algorithms 1-3.

Algorithm 4.

long a, b, gcd;

//a = 420748418; b = 9659595;

if (a > b) do { a %= b; if (a < 1) { gcd = b; break; }

b %= a; if (b < 1) { gcd = a; break; } } while (true);

else do { b %= a; if (b < 1) { gcd = a; break; }

a %= b; if (a < 1) { gcd = b; break; } } while (true);

Numerical experiments.

Part 1. We will use the following task:

long d;

d = 0;

for (int i = 1; i < 1000000001; i++) { b = i; a = 2000000002 - i;

//here is the source code of every one of Algorithms 1-4

d += gcd; }

Console.WriteLine(d);

Results from Algorithms 1-4 (see Fig. 2 - Fig. 5).
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Figure 2: Algorithm 1. d = 38332157136, time: 4 min. 10.016 sec.

Figure 3: Algorithm 2. d = 38332157136, time: 4 min. 15.994 sec.

Figure 4: Algorithm 3. d = 38332157136, time: 4 min. 2.534 sec.

Figure 5: Algorithm 4. d = 38332157136, time: 3 min. 58.914 sec.

Figure 6: Algorithm 1. d = 38332157136, time: 4 min. 31.401 sec.

Figure 7: Algorithm 2. d = 38332157136, time: 4 min. 17.606 sec.

Figure 8: Algorithm 3. d = 38332157136, time: 4 min. 17.366 sec.
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Figure 9: Algorithm 4. d = 38332157136, time: 4 min. 4.882 sec.

Part 2. We will use the following task where we swapped the values of ‘a’ and
‘b’ from Part 1:

long d;
d = 0;
for (int i = 1; i < 1000000001; i++) { a = i; b = 2000000002 - i;
//here is the source code of every one of Algorithms 1-4
d += gcd; }
Console.WriteLine(d);
Results from Algorithms 1-4 (see Fig. 6 - Fig. 9).

Part 3. Average time of performance
EN = (Part 1.AlgorithmN + Part 2.AlgorithmN ) / 2,
where N = 1 to 4 denotes using of Algorithms 1 to 4.
E1 = 4 min. 20.713 sec.; E2 = 4 min. 16.800 sec.;
E3 = 4 min. 9.950 sec.; E4 = 4 min. 1.898 sec.
So you can see that our new Algorithm 4 is faster than all others. This modi-
fication can be used for polynomial factorization [1], [5] and [2].
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