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Abstract: In this note we give new and faster natural realization of Extended Euclidean
Greatest Common Divisor (EEGCD) algorithm. The motivation of this work is that this
algorithm is used in numerous scientific fields [36], [24]. Internet search engines show very
high appearance of ‘greatest common divisor’. In our implementation we reduce the number
of iterations and now they are 50% of Knuth’s realization of EEGCD. For all algorithms we
have use the implementations in Visual C# 2017 programming environment.

This paper is dedicated to Prof. Donald Knuth

on occasion on his 80th anniversary

AMS Subject Classification: 11A05, 68W01

Key Words: greatest common divisor, extended Euclidean greatest common divisor,

Knuth’s algorithm, reduced number of iterations

1. Introduction

In all implementations we will use as comment in example a = 420748418; b
= 9659595. All algorithms work correctly for every a>0 and b>0. Our work
is natural continuation of ideas given in [21], [22]. In previous paper [21] we
gave new natural algorithm for GCD. Here we will write it recursively in this
elegant manner:
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static long Euclid(long a, long b)
{ long r = a % b; if (r < 1) return b;
long u = b % r; if (u < 1) return r;

return Euclid(r, u); }

This algorithm is also about 30% faster than recursive implementation of
Knuth’s algorithm [24]:

static long Euclid(long a, long b)
{ if (b < 1) return a; long r = a % b;
return Euclid(b, r); }

which is given as Algorithm 1 in [21].

We can call every of both functions via the following operator:
if (a > b) gcd = Euclid(a, b); else gcd = Euclid(b, a);

In his book Knuth [24] proposed the following iteration process:

Algorithm 1.

x1 = 1; x2 = 0; //ao = 420748418; bo = 9659595;

while (b > 0) { q = a / b; r = a % b; a = b; b = r;
t = x2; x2 = x1 - q * x2; x1 = t; }
eegcd = a; x = x1; y = (a - x * ao) / bo;

which is widely spread via many sources and books [1]-[20] and [23]-[36].
Note that in all algorithms ‘ao’ and ‘bo’ are initial values of ‘a’ and ‘b’

respectively.

Recursive implementation of Algorithm 1. is:

Algorithm 2.

static long Euclid(long a, long b, ref long x, ref long y)
{ if (b < 1) { x = 1; y = 0; return a; }

long q = a / b; long r = a % b;
long d = Euclid(b, r, ref y, ref x);
y -= q * x;
return d; }

and its calling:

if (a > b) eegcd = Euclid(a, b, ref x, ref y);
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Figure 1: Visual C# 2017.

else eegcd = Euclid(b, a, ref x, ref y);

2. Main Results

Now we set the task to optimize Knuth’s implementations of EEGCD algorithm.
For testing we will use the following computer: processor - Intel(R) Core(TM)
i7-6700HQ CPU 2.60GHz, 2592 Mhz, 4 Core(s), 8 Logical Processor(s), RAM
16 GB, Microsoft Windows 10 Enterprise x64 with the following programing
environment (see Figure 1).

We propose the following iteration process.
Algorithm 3.

//ao = 420748418; bo = 9659595;

if (a > b) { x1 = 1; x2 = 0;
do { q = a / b; a %= b; t = x2; x2 = x1 - q * x2; x1 = t;

if (a < 1) { eegcd = b; x = x1; y = (b - x * ao) / bo; break; }
q = b / a; b %= a; t = x2; x2 = x1 - q * x2; x1 = t;

if (b < 1) { eegcd = a; x = x1; y = (a - x * ao) / bo; break; } } while (true); }

else { x1 = 0; x2 = 1;
do { q = b / a; b %= a; t = x2; x2 = x1 - q * x2; x1 = t;

if (b < 1) { eegcd = a; x = x1; y = (a - x * ao) / bo; break; }

q = a / b; a %= b; t = x2; x2 = x1 - q * x2; x1 = t;
if (a < 1) { eegcd = b; x = x1; y = (b - x * ao) / bo; break; } } while (true); }

Recursive variation of Algorithm 3. is the following:
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Algorithm 4.

static long Euclid(long a, long b, ref long x, ref long y)

{ long r = a % b; long q1 = a / b;

if (r < 1) { x = 1; y = 0; return b; }

long u = b % r; long q2 = b / r;

if (u < 1) { x = - q1; y = 1; return r; }

long d = Euclid(r, u, ref x, ref y);

y -= q2*x; x -= q1*y;

return d; }

and the calling is:

if (a > b) eegcd = Euclid(a, b, ref y, ref x);

else eegcd = Euclid(b, a, ref x, ref y);

Numerical experiments.

Part 1. We will use the following task:

long a, b, x1, x2, x, y, q, r, t, ao, bo, eegcd;

//a = 420748418; b = 9659595;

long d;

d = 0;

for (int i = 1; i < 100000001; i++)

{ b = i; a = 200000002 - i; bo = i; ao = 200000002 - i;

//here is the source code or callings when it is recursive

//implemented every one of Algorithms 1-4

d += eegcd; }

Console.WriteLine(d);

Results of Part 1.: Time of Algorithm 1: 32.473 sec.; Time of Algorithm 2:
61.090 sec.; Time of Algorithm 3: 31.922 sec.; Time of Algorithm 4: 45.607 sec.

Part 2. We will use the following task where we swapped the values of ‘a’ and
‘b’:

long a, b, x1, x2, x, y, q, r, t, ao, bo, eegcd;

//a = 420748418; b = 9659595;

long d;

d = 0;

for (int i = 1; i < 100000001; i++)
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{ a = i; b = 200000002 - i; ao = i; bo = 200000002 - i;

//here is the source code or callings when it is recursive

//implemented every one of Algorithms 1-4

d += eegcd; }

Console.WriteLine(d);

Results of Part 2.: Time of Algorithm 1: 35.065 sec.; Time of Algorithm 2:
59.604 sec.; Time of Algorithm 3: 31.438 sec.; Time of Algorithm 4: 45.579 sec.

Part 3.

Average time of performance

EN = (Part 1.Algorithm N + Part 2.Algorithm N ) / 2,

where N = 1 to 4 denotes using of Algorithms 1 to 4.

E1 = 33.769 sec.

E2 = 1 min. 0.247 sec.

E3 = 31.680 sec.

E4 = 45.593 sec.

So you can see that our new Algorithms 3 and 4 are faster than Algorithms 1
and 2 respectively.
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