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ROMAN GOLOVKO

We study the relation of an embedded Lagrangian cobordism between two
closed, orientable Legendrian submanifolds of R2n+1. More precisely, we in-
vestigate the behavior of the Thurston–Bennequin number and (linearized)
Legendrian contact homology under this relation. The result about the
Thurston–Bennequin number can be considered as a generalization of the
result of Chantraine which holds when n = 1. In addition, we provide a few
constructions of Lagrangian cobordisms and prove that there are infinitely
many pairs of exact Lagrangian cobordant and not pairwise Legendrian
isotopic Legendrian n-tori in R2n+1.

1. Introduction

Basic definitions. A contact manifold (M, ξ) is a (2n+ 1)-dimensional manifold
M equipped with a smooth maximally nonintegrable hyperplane field ξ ⊂ TM ,
that is, locally ξ = kerα, where α is a 1-form which satisfies α ∧ (dα)n 6= 0. ξ is
a contact structure and α is a contact 1-form which locally defines ξ . The Reeb
vector field Rα of a contact form α is uniquely defined by the conditions α(Rα)= 1
and dα(Rα, · ) = 0. The most basic contact manifold is (R2n+1, ξ), where R2n+1

has coordinates (x1, y1, . . . , xn, yn, z), and ξ is given by α = dz −
∑n

i=1 yi dxi .
Note that Rα = ∂z . From now on, for ease of notation, we write R2n+1 instead of
(R2n+1, ξ).

A Legendrian submanifold of R2n+1 is an n-dimensional submanifold 3 which
is everywhere tangent to ξ , that is, Tx3 ⊂ ξx for every x ∈ 3. The Lagrangian
projection is a map 5 : R2n+1

→ R2n defined by

5(x1, y1, . . . , xn, yn, z)= (x1, y1, . . . , xn, yn).

Moreover, for 3 in an open dense subset of all Legendrian submanifolds with C∞

topology, the self-intersection of 5(3) consists of a finite number of transverse
double points. Legendrian submanifolds which satisfy this property are called
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chord generic. A Reeb chord of 3 is a path along the flow of the Reeb vector field
which begins and ends on 3. Since Rα = ∂z , there is a one-to-one correspondence
between Reeb chords of 3 and double points of 5(3). From now on we assume
that all Legendrian submanifolds of R2n+1 are connected and chord-generic.

The symplectization of R2n+1 is the symplectic manifold (R×R2n+1, d(etα)),
where t is a coordinate on R.

Definition 1.1. Let 3− and 3+ be two Legendrian submanifolds of R2n+1. We
say that 3− is cobordant to 3+ if there exists a smooth cobordism (L;3−,3+),
and an embedding from L to (R×R2n+1, d(etα)) such that

L|(−∞,−TL ]×R2n+1 = (−∞,−TL ]×3−,

L|[TL ,∞)×R2n+1 = [TL ,∞)×3+

for some TL � 0 and Lc
:= L|[−TL−1,TL+1]×R2n+1 is compact. In the case of a

Lagrangian (exact Lagrangian) embedding, we say that 3− is Lagrangian (exact
Lagrangian) cobordant to 3+. We will in general not distinguish between L and
Lc and call both L .

From now on we assume that all embedded cobordisms in the symplectization
of R2n+1 are orientable.

We next define some notations. If L is an embedded, embedded Lagrangian, or
embedded exact Lagrangian cobordism from 3− to 3+, we write

3− ≺L 3+, 3− ≺
lag
L 3+, or 3− ≺ex

L 3+,

respectively. If L3 is a filling, Lagrangian filling, or exact Lagrangian filling of 3
in the symplectization of R2n+1, that is, L3 is an embedded, embedded Lagrangian,
or embedded exact Lagrangian cobordism with empty −∞-boundary and +∞-
boundary 3, then we write ∅≺L3 3, ∅≺lag

L3 3 or ∅≺ex
L3 3, respectively.

For the discussion about Lagrangian cobordisms between Legendrian knots, we
refer to [Chantraine 2010; Ekholm et al.≥2013], and for the obstructions to the ex-
istence of Lagrangian cobordisms defined using the theory of generating families,
we refer to [Sabloff and Traynor 2010; Sabloff and Traynor 2011].

Legendrian contact homology. Legendrian contact homology was independently
introduced by Eliashberg, Givental, and Hofer [Eliashberg et al. 2000] and, for
Legendrian knots in R3, by Chekanov [2002]. We now briefly remind the reader of
the definition of the linearized Legendrian contact homology complex of a closed,
orientable, chord-generic Legendrian submanifold3⊂R2n+1; for more details see
[Ekholm et al. 2005a].

Let C be the set of Reeb chords of 3. Since 3 is generic, C is a finite set. Let
A3 be the vector space over Z2 generated by the elements of C and A3 the unital
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tensor algebra over A3, that is,

A3 =

∞⊗
k=0

A⊗k
3 .

A3 is a differential graded algebra whose grading is denoted by | · | and whose
differential is denoted by ∂3. A3 is called a Legendrian contact homology differ-
ential graded algebra of 3. For the definitions of | · | and ∂3 we refer to Section 2
of [Ekholm et al. 2005b].

Note that it is difficult to use Legendrian contact homology in practical appli-
cations, as it is the homology of an infinite dimensional noncommutative algebra
with a nonlinear differential. One of the ways to extract useful information from the
Legendrian contact homology differential graded algebra is to follow Chekanov’s
[2002] linearization method, which uses an augmentation ε : A3 → Z2 to pro-
duce a finite-dimensional chain complex LCε(3) whose homology is denoted by
LCHε(3). More precisely, ε is a graded algebra map ε :A3→ Z2 that satisfy the
following two conditions:

(1) ε(1)= 1;

(2) ε ◦ ∂3 = 0.

Consider the graded isomorphism ϕε :A3→A3 defined by ϕε(c)= c+ε(c). This
map defines a new differential ∂ε(c) :=ϕε◦∂3◦(ϕε)−1(c) and LCε(3) := (A3, ∂ε1 ),
where ∂ε1 : A3→ A3 is a 1-component of ∂ε. We let LCHε(3) be the homology
of the dual complex LCε(3) := Hom(LCε(3),Z2).

Following Ekholm [2008], we observe that exact Lagrangian cobordism between
two Legendrian submanifolds can be used to define a map between the Legendrian
contact homology algebras.

In this paper, we establish the following two long exact sequences.

Theorem 1.2. Let3− and3+ be two closed, orientable Legendrian submanifolds
of R2n+1 such that ∅≺ex

L3−
3−. Then from the condition3− ≺ex

L 3+ it follows that
there is an exact sequence

(1-1) → Hi (3−)→ Hi (L)⊕LCHn−i+2
ε−

(3−)

→ LCHn−i+2
ε+

(3+)→ Hi−1(3−)→ .

In addition, 3− ≺ex
L 3+ implies that there is an exact sequence

(1-2) → LCHn−i+2
ε−

(3−)→ LCHn−i+2
ε+

(3+)

→ Hi (L ,3−)→ LCHn−i+3
ε−

(3−)→ .
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Here LCHi
ε±
(3±) is the linearized Legendrian contact cohomology of3± over Z2,

linearized with respect to the augmentation ε±. ε− is the augmentation induced by
L3− , and ε+ is the augmentation induced by L and ε−.

We thank Joshua Sabloff and Lisa Traynor for pointing out how to get the second
long exact sequence in Theorem 1.2.

The Thurston–Bennequin invariant. The Thurston–Bennequin invariant (num-
ber) of a closed, orientable, connected Legendrian submanifold 3 of R2n+1 was
independently defined for n = 1 by Bennequin [1983] and by Thurston, and was
generalized to the case when n ≥ 1 by Tabachnikov [1988].

Pick an orientation on 3 ⊂ R2n+1. Push 3 slightly off of itself along Rα = ∂z

to get another oriented submanifold 3′ disjoint from 3. The Thurston–Bennequin
invariant of 3 is the linking number

tb(3)= lk(3,3′).

Note that tb(3) is independent of the choice of orientation on 3, since changing
it also changes the orientation of 3′.

Our goal is to prove the following theorem.

Theorem 1.3. Let3− and3+ be two closed, orientable Legendrian submanifolds
of R2n+1.

(1) If n is even and 3− ≺L 3+,

tb(3+)+ tb(3−)= (−1)n/2+1χ(L).

(2) If n is odd, ∅≺ex
L3−

3−, and 3− ≺ex
L 3+,

tb(3+)− tb(3−)= (−1)((n−2)(n−1))/2+1χ(L).

Constructions and examples. Chantraine [2010] described the way to construct
Lagrangian cobordisms from Legendrian isotopies of Legendrian knots. We show
that the construction of Chantraine works in high dimensions. More precisely, we
prove the following:

Proposition 1.4. Let 3−,3+ be two closed, orientable Legendrian submanifolds
of R2n+1 that are Legendrian isotopic. Then there exists an exact Lagrangian
cobordism L such that

3− ≺
ex
L 3+.

Front spinning is a procedure invented by Ekholm, Etnyre, and Sullivan [Ekholm
et al. 2005b] to construct a closed, orientable Legendrian submanifold63⊂R2n+3

from a closed, orientable Legendrian submanifold 3 ⊂ R2n+1. We will provide a
detailed description of this procedure in Section 4, and prove the following property
of it.



LAGRANGIAN COBORDISMS BETWEEN LEGENDRIAN SUBMANIFOLDS OF R2n+1 105

Proposition 1.5. Let 3−,3+ be two closed, orientable Legendrian submanifolds
of R2n+1. If 3− ≺

lag
L 3+, there exists a Lagrangian cobordism 6L such that

63− ≺
lag
6L 63+.

In addition, if 3− ≺ex
L 3+, there exists an exact Lagrangian cobordism 6L such

that 63− ≺ex
6L 63+.

Finally, we apply Proposition 1.5 to the exact Lagrangian cobordisms from
[Ekholm et al. ≥ 2013] and construct exact Lagrangian cobordisms between the
nonisotopic Legendrian tori described in [Ekholm et al. 2005b].

Proposition 1.6. There are infinitely many pairs of exact Lagrangian cobordant
and not pairwise Legendrian isotopic Legendrian n-tori in R2n+1.

2. Proof of Theorem 1.2

Proof. In this section, we prove the existence of the long exact sequences described
in Theorem 1.2. We first construct an exact Lagrangian filling of 3+.

Since 3− is connected, and L , L3− are exact Lagrangian cobordisms in the
symplectization of R2n+1 such that the (−∞)-boundary of L , which is 3−, agrees
with the (+∞)-boundary of L3− , L and L3− can be joined to the exact Lagrangian
cobordism L3+ in the symplectization of R2n+1, where L3+ is obtained by gluing
the positive end of L3− to the negative end of L . Since the −∞-boundary of L3−
is empty, the −∞-boundary of L3+ is also empty.

We now use the Mayer–Vietoris long exact sequence for L3−, L ⊂ L3+ . We
extend L3− and L in such a way that L3− ∩ L is diffeomorphic to R×3−. Hence
the Mayer–Vietoris long exact sequence can be written as

→ Hi (R×3−)→ Hi (L)⊕ Hi (L3−)→ Hi (L3+)→ Hi−1(R×3−)→ .

Now we note that Hi (R × 3−) ' Hi (3−) for all i . Hence we can rewrite the
Mayer–Vietoris long exact sequence as

(2-1) → Hi (3−)→ Hi (L)⊕ Hi (L3−)→ Hi (L3+)→ Hi−1(3−)→ .

We now remind the reader of the following fact, which comes from certain
observations of Seidel in wrapped Floer homology [Abouzaid and Seidel 2010;
Fukaya et al. 2009].

Fact 2.1 [Ekholm 2012]. Let 3 be a closed, orientable, connected, chord-generic
Legendrian submanifold of R2n+1 and ∅≺ex

L3 3. Then

(2-2) Hn−i+2(L3)' LCHi
ε(3).

Here ε is the augmentation induced by L3.
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For the definition of the augmentation induced by a filling, we refer to Section 3
of [Ekholm 2008]. Also, [Ekholm 2012] provides a fairly complete sketch of a
proof of Fact 2.1.

We change the indices in (2-2) and write it as

(2-3) Hi (L3±)' LCHn−i+2
ε±

(3±).

Using (2-3), we rewrite the Mayer–Vietoris long exact sequence (2-1) as

(2-4) → Hi (3−)→ Hi (L)⊕LCHn−i+2
ε−

(3−)

→ LCHn−i+2
ε+

(3+)→ Hi−1(3−)→ .

We now write the long exact sequence for the pair (L3−, L3+)

(2-5) → Hi (L3−)→ Hi (L3+)→ Hi (L3+, L3−)→ Hi−1(L3−)→ .

Using (2-3) and the excision theorem for L3+, L ⊂ L3+ , we write the long exact
sequence (2-5) as

(2-6) → LCHn−i+2
ε−

(3−)→ LCHn−i+2
ε+

(3+)

→ Hi (L ,3−)→ LCHn−i+3
ε−

(3−)→ . �

Remark 2.2. Under the conditions of Theorem 1.2, if Hi (3−) = Hi−1(3−) = 0
for some i , say when 3− = Sn and i, i − 1 6= 0, n, then long exact sequence (2-4)
implies that

LCHn−i+2
ε+

(3+)' Hi (L)⊕LCHn−i+2
ε−

(3−).

Hence, for such i , we get

Hi (L)' LCHn−i+2
ε+

(3+)/LCHn−i+2
ε−

(3−).

Remark 2.3. We can rewrite the long exact sequences (2-4) and (2-6) using the
relative symplectic field theory of ((R×R2n+1, d(etα)), L3±), since

(2-7) E i
1
(
(R×R2n+1, d(etα)), L3±

)
' LCHi

ε±
(3±)

over Z2. For the definition of the relative symplectic field theory, we refer to
[Ekholm 2008], and for the details about the isomorphism described in (2-7), we
refer to [Ekholm 2012]. (We observe that since L3± are connected, the associated
spectral sequences have only one level.)

3. Proof of Theorem 1.3

Let n be even. We recall the following result:
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Proposition 3.1 [Eliashberg 1990]. Let 3 be a closed, orientable, connected,
chord-generic Legendrian submanifold of R2n+1, where n is even. Then

tb(3)= (−1)n/2+1 1
2χ(3).

We now note that

(3-1) χ(∂L)= 2χ(L),

since the Euler characteristic of an even-dimensional boundary is twice the Euler
characteristic of its bounded manifold; see Chapter 21 of [May 1999]. We now
observe that ∂L =3+ t3− and hence, from (3-1), we get that

(3-2) 2χ(L)= χ(∂L)= χ(3+)+χ(3−).

Then we use Proposition 3.1 and rewrite (3-2) as

(3-3) 2χ(L)= χ(3+)+χ(3−)= 2(−1)−n/2−1(tb(3+)+ tb(3−)).

From (3-3) it follows that

(3-4) tb(3+)+ tb(3−)= (−1)n/2+1χ(L).

This finishes the proof of Theorem 1.3 in the case when n is even.
We now prove case (2) of the theorem. First we provide an alternate definition

of the Thurston–Bennequin number, found in [Ekholm et al. 2005a].
Let 3 be a closed, orientable, connected, chord-generic Legendrian submani-

fold of R2n+1 and let c be a Reeb chord of 3 with end points a and b such that
z(a) > z(b). We define Va := d5(Ta3) and Vb := d5(Tb3). Given an orientation
on 3, Va and Vb are oriented n-dimensional transverse subspaces of R2n . If the
orientation of Va ⊕ Vb agrees with that of R2n , we say that the sign of c, denoted
by sign(c), is +1, otherwise we say that it is −1. Then

(3-5) tb(3)=
∑

c

sign(c),

where the sum is taken over all Reeb chords c of 3.
The following proposition was proven using (3-5):

Proposition 3.2 [Ekholm et al. 2005b]. If 3⊂ R2n+1 is a closed, orientable, con-
nected, chord generic Legendrian submanifold,

tb(3)= (−1)((n−2)(n−1))/2
∑
c∈C

(−1)|c|.

We now construct an exact Lagrangian filling of 3+. We do it the same way as
in the proof of Theorem 1.2, namely L3+ is obtained by gluing the positive end of
L3− to the negative end of L in the symplectization of R2n+1.
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By using Proposition 3.2 and taking Euler characteristics of the long exact se-
quence (1-2), we get

(3-6) tb(3+)− tb(3−)= (−1)((n−2)(n−1))/2+1χ(L).

This finishes the proof of Theorem 1.3 when n is odd. �

Remark 3.3. When n = 1 we can write (3-6) as

tb(3+)− tb(3−)=−χ(L),

which coincides with the formula from Theorem 1.2 of [Chantraine 2010].

Remark 3.4. Observe that the condition of Theorem 1.3 in the case when n is odd
is much stronger than the condition of Theorem 1.3 in the case when n is even. If
n is even, ∅ ≺ex

L3−
3− and 3− ≺ex

L 3+, then, taking Euler characteristics of the
long exact sequence (1-2) and using Proposition 3.2, we get that

tb(3+)+ tb(3−)= (−1)n/2+1χ(L).

The proof of Theorem 1.3 can be easily modified to become a proof of the
following remark.

Remark 3.5. Let 3 be a closed, orientable Legendrian submanifold of R2n+1.

(1) If n is even and ∅≺L3 3,

tb(3)= (−1)n/2+1χ(L3).

(2) If n is odd and ∅≺ex
L3 3,

tb(3)= (−1)((n−2)(n−1))/2+1χ(L3).

4. Examples

In this section, we describe a few examples of Lagrangian cobordisms. These
examples are based on [Chantraine 2010; Ekholm et al. 2005b] and the work of
Ekholm, Honda, and Kálmán [Ekholm et al. ≥ 2013]. For the constructions of
Lagrangian cobordisms based on the generating families technique, we refer to
[Bourgeois et al. ≥ 2013].

Example 4.1. Proof of Proposition 1.4. Let 3− and 3+ ⊂ R2n+1 be two closed,
orientable Legendrian submanifolds which are Legendrian isotopic. Then there is
a smooth isotopy of a closed manifold3 to R2n+1 given by ϕ :3×[0, 1]→R2n+1

such that 3ν := ϕ(3, ν) is Legendrian for all ν ∈ [0, 1], 3− = 30 and 3+ =
31. We now construct L such that 3− ≺ex

L 3+. Observe that in the construction
below one can omit the assumption that 3−,3+, L are connected. In the case of
Legendrian knots in R3, the construction of L was described in [Chantraine 2010,
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Theorem 1.1]. In our case, the construction of Chantraine can be described in the
following way.

(1) Note that R×3− is an exact Lagrangian submanifold of (R×R2n+1, d(etα)).

(2) Theorem 2.6.2 of [Geiges 2008] implies that there is a compactly supported
one-parameter family of contactomorphisms fν which realizes the isotopy
(3ν)ν∈[0,1].

(3) Proposition 2.2 from [Chantraine 2010] implies that a contactomorphism of
R2n+1 lifts to a Hamiltonian diffeomorphism of the symplectization

(R×R2n+1, d(etα)).

(4) Let H be a Hamiltonian on R× R2n+1 whose flow realizes the lifts of fνs.
The existence of H follows from (3). Following Chantraine, we construct

H ′ : R×R2n+1
×[0, 1] → R

such that

H ′(t, x, ν)=
{

H(t, x, ν) for t > T ;
0 for t <−T .

Here T � 0.

(5) Let φν be the Hamiltonian flow of H ′. We now observe that φ1(R × 3−)

coincides with R×3− near −∞ and with R×3+ near∞.

(6) Since R×3− is exact and φ1 a Hamiltonian diffeomorphism, L :=φ1(R×3−)

is exact. �

Remark 4.2. Eliashberg and Gromov [1998] provided another proof of the fact
that Legendrian isotopy implies Lagrangian cobordism.

Example 4.3. Proof of Proposition 1.5. The following construction is based on
the front spinning method invented in [Ekholm et al. 2005b].

First we recall the notion of the front projection. The front projection is a map
5F from R2n+1 to Rn+1 defined by

5F (x1, y1, . . . , xn, yn, z)= (x1, x2, . . . , xn, z).

Let 3 be a closed, orientable Legendrian submanifold of R2n+1 parametrized by
f3 :3→ R2n+1. We write

f3(p)= (x1(p), y1(p), . . . , xn(p), yn(p), z(p))

for p ∈3. The front projection of 3 is parametrized by 5F ◦ f3, and we have

5F ◦ f3(p)= (x1(p), x2(p), . . . , xn(p), z(p)).
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Without loss of generality we can assume that x1(p) > 0 for all p ∈ 3. We now
embed Rn+1 to Rn+2 via

(x1, . . . , xn, z)→ (x0 = 0, x1, . . . , xn, z)

and construct the suspension of3, denoted by 63, such that5F (63) is obtained
from 5F (3) by rotating it around the subspace x0 = x1 = 0. 5F (63) can be
parametrized by (x1(p) sin θ, x1(p) cos θ, x2(p), . . . , xn(p), z(p))with θ ∈ S1 and
is the front projection of a Legendrian embedding 3 × S1

→ R2n+3. For the
properties of 63 we refer to Lemma 4.16 of [Ekholm et al. 2005b].

Let 3− and 3+ be two closed, orientable Legendrian submanifolds of R2n+1

such that

(4-1) 3± ⊂ {(x1, y1, . . . , xn, yn, z) ∈ R2n+1
| x1 > 0}

and 3− ≺
lag
L 3+. Let L be parametrized by fL : L→ R2n+2

fL(p)= (t (p), x1(p), y1(p), . . . , xn(p), yn(p), z(p)).

Without loss of generality we assume that x1(p) > 0 for all p. (Formula (4-1)
implies that

{ fL(p) | x1(p)≤ 0}

is compact and we can translate L so that x1(p) > 0 for all p.) Then we construct
a Lagrangian cobordism from 63− to 63+ that we call 6L . We define 6L to
be parametrized by

f6L : L × S1
→ R×R2n+3

with

f6L(p, θ)

= (t (p), x1(p) sin θ, y1(p) sin θ, x1(p) cos θ, y1(p) cos θ, x2(p), . . . , z(p)).

Here p ∈ L and θ ∈ S1.
We now show that 6L is really a Lagrangian cobordism from 63− to 63+.

Let

3
TL
+ := {(x0, . . . , yn, z) | (TL , x0, . . . , yn, z) ∈ f6L(6L)∩ ({TL}×R2n+3)},

3
TL
− := {(x0, . . . , yn, z) | (−TL , x0, . . . , yn, z) ∈ f6L(6L)∩ ({−TL}×R2n+3)}.

From the definition of TL , it follows that

f6L(6L)∩ ([TL ,∞)×R2n+3)= [TL ,∞)×3
TL
+ ,

f6L(6L)∩ ((−∞,−TL ]×R2n+3)= (−∞,−TL ]×3
TL
− .
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In addition, we observe that 3TL
± ⊂ R2n+3 can be parametrized by

f
3

TL
±

:3±× S1
→ R2n+3

such that

f
3

TL
±

(p, θ)= (x1(p) sin θ, y1(p) sin θ, x1(p) cos θ, y1(p) cos θ, x2(p), . . . , z(p)).

Here p ∈ 3± ⊂ ∂L and θ ∈ S1. We now prove that 3TL
± coincides with 63±. It

is clear that 5F (3
TL
± )=5F (63±). It remains to prove that 3TL

± is a Legendrian
submanifold of R2n+3.

It is easy to see that

(4-2) f ∗
3

TL
±

(
dz−

n∑
i=0

yi dxi

)
= dz(p)−

n∑
i=2

yi (p) dxi (p)

− y1(p)(sin2 θ + cos2 θ) dx1(p)+ (y1(p)x1(p) sin θ cos θ

− y1(p)x1(p) sin θ cos θ) dθ.

Since3± is a Legendrian submanifold of R2n+1 and so f ∗3±(dz−
∑n

i=1 yi dxi )=0,
we have

(4-3) y1(p) dx1(p)= dz(p)−
n∑

i=2

yi (p) dxi (p).

Hence (4-2) and (4-3) imply that

(4-4) f ∗
3

TL
±

(
dz−

n∑
i=0

yi dxi

)
= 0.

Since

f3±(p) := (x1(p), . . . , yn(p), z(p)),

where p∈3±⊂∂L is a parametrization of an embedded submanifold of dimension
n, and x1(p) > 0 for p ∈3± ⊂ ∂L , one easily sees that

f
3

TL
±

(p)= (x1(p) sin θ, y1(p) sin θ, x1(p) cos θ, y1(p) cos θ, x2(p), . . . , z(p)),

where p ∈ 3±, θ ∈ S1, is a parametrization of an embedded submanifold of di-
mension n + 1. Thus, using (4-4), we see that 3TL

± is an embedded Legendrian
submanifold of R2n+3 whose front projection coincides with 5F (63±). Thus we
get that 3TL

± =63±.
We now note that
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(4-5) f ∗6L

(
d
(

et
(

dz−
n∑

i=0

yi dxi

)))
= et(dt (p)∧dz(p)−

n∑
i=2

dyi (p)∧dxi (p)

−

n∑
i=2

yi (p)dt (p)∧ dxi (p)− (y1(p)(sin2 θ + cos2 θ)dt (p)∧ dx1(p)

+ (sin2 θ + cos2 θ)dy1(p)∧ dx1(p)+ (sin2 θ + cos2 θ)x1(p)y1(p)dθ ∧ dθ

+ (y1(p)x1(p) sin θ cos θ − y1(p)x1(p) sin θ cos θ)dt (p)∧ dθ

+ (y1(p) sin θ cos θ − y1(p) sin θ cos θ)dθ ∧ dx1(p)

+ (x1(p) sin θ cos θ − x1(p) sin θ cos θ)dy1(p)∧ dθ)).

In addition, observe that

(4-6) et(dt (p)∧ dz(p)−
n∑

i=2

dyi (p)∧ dxi (p)−
n∑

i=2

yi (p)dt (p)∧ dxi (p))

= et(y1(p)dt (p)∧ dx1(p)+ dy1(p)∧ dx1(p)).

Hence (4-5) and (4-6) imply that

(4-7) f ∗6L

(
d
(

et
(

dz−
n∑

i=0

yi dxi

)))
= 0.

Since
fL(p)= (t (p), x1(p), y1(p), . . . , xn(p), yn(p), z(p)),

where p ∈ L , is a parametrization of an embedded cobordism of dimension n+ 1
and x1(p) > 0 for p ∈ L , one easily sees that

f6L(p, θ)

= (t (p), x1(p) sin θ, y1(p) sin θ, x1(p) cos θ, y1(p) cos θ, x2(p), . . . , z(p)),

where p ∈ L and θ ∈ S1, is a parametrization of an embedded cobordism of dimen-
sion n+2. Hence we use (4-7) and see that 6L is really an embedded Lagrangian
cobordism from 63− to 63+.

We now assume that 3− ≺ex
L 3+. Then there is a function hL ∈ C∞( fL(L),R)

such that

dhL = et
(

dz−
n∑

i=1

yi dxi

)
.

From a calculation similar to (4-2) it follows that

(4-8) f ∗6L

(
et
(

dz−
n∑

i=0

yi dxi

))
= et (p)

(
dz(p)−

n∑
i=1

yi (p) dxi (p)
)
.



LAGRANGIAN COBORDISMS BETWEEN LEGENDRIAN SUBMANIFOLDS OF R2n+1 113

Since f6L is an embedding, we can define h6L ∈ C∞( f6L(6L),R) by setting

( f ∗6Lh6L)(p, θ) := ( f ∗L hL)(p).

Hence we use (4-8) and get

(4-9)

d( f ∗6Lh6L)= et (p)
(

dz(p)−
n∑

i=1

yi (p) dxi (p)
)
= f ∗6L

(
et
(

dz−
n∑

i=0

yi dxi

))
.

Therefore, since f6L is an embedding, (4-9) implies that

d(h6L)= et
(

dz−
n∑

i=0

yi dxi

)
.

Hence, 6L is an exact Lagrangian cobordism. �

Note that the proof of Proposition 1.5 can be easily modified to become a proof
of the following remark.

Remark 4.4. Let 3 be a closed, orientable Legendrian submanifolds of R2n+1. If
∅≺lag

L3 3, there exists a Lagrangian filling L63 such that ∅≺lag
L63 63. In addition,

if ∅≺ex
L3 3, there exists an exact Lagrangian filling L63 such that ∅≺ex

L63 63.

Before we discuss the next example, we briefly recall a few facts about exact
Lagrangian cobordisms between Legendrian knots in R3.

Theorem 4.5 [Ekholm et al. ≥ 2013; Ekholm et al. 2007]. There exists an exact
Lagrangian cobordism for the following:

(1) Legendrian isotopy,

(2) 0-resolution at a contractible crossing in the Lagrangian projection,

(3) capping off a tb=−1 unknot with a disk.

See Figure 1 for the 0-resolution on the Lagrangian projection.
Following Ekholm, Honda, and Kálmán, we say that a contractible crossing of

3 is a crossing so that z1 − z0 can be shrunk to zero without affecting the other
crossings. (Here z1 is the z-coordinate on the upper strand and z0 is the z-coordinate
on the lower strand.)

Figure 1. The 0-resolution on the Lagrangian projection.
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Remark 4.6. Chantraine [2010] proved the first part of Theorem 4.5.

Remark 4.7. Note that the second part of Theorem 4.5 can be proven using the
model from Section 3.3 of [Rizell 2012].

Conjecture 4.8 [Ekholm et al. ≥ 2013; Ekholm et al. 2007]. If ∅≺ex
L3 3, then L3

is obtained by stacking exact Lagrangians cobordisms described in Theorem 4.5.

Example 4.9. Proof of Proposition 1.6. We now use Example 4.3 to get infinitely
many pairs of exact Lagrangian cobordant and not pairwise Legendrian isotopic
Legendrian n-tori in R2n+1. We first recall that Theorem 4.5 says that 0-resolution
at a contractible crossing in the Lagrangian projection can be realized as an exact
Lagrangian cobordism. Let T2k+1 be the Legendrian torus knot from Example 4.18
of [Ekholm et al. 2005b]; see Figure 2 for the Lagrangian projection of T2k+1.
One observes that all the crossings in the middle part of the Lagrangian projection
are contractible (see [Ekholm et al. 2007] for the case of T3) and hence one can
get T2k−1 from T2k+1 by contracting c2k+1 and then c2k . Let L2k+1

2k be an exact
Lagrangian cobordism which corresponds to the 0-resolution at c2k+1 and L2k

2k−1 an
exact Lagrangian cobordism from T2k−1 to T2k which corresponds to the resolution
of c2k . Then we stack L2k+1

2k and L2k
2k−1 and get an exact Lagrangian cobordism

that we call L2k+1
2k−1 such that

T2k−1 ≺
ex
L2k+1

2k−1
T2k+1.

If we stack L2i+1
2i−1s we get an exact Lagrangian cobordism L2k+1

2 j+1 such that

T2 j+1 ≺
ex
L2k+1

2 j+1
T2k+1

for k > j . We use the construction described in Example 4.3 and get

6nT2 j+1 ≺
ex
6n L2k+1

2 j+1
6nT2k+1

a
1

a
2

c
1

c
2

c
3

c
2k+1

c
2k

Figure 2. The knot T2k+1; cf. Figure 13 of [Ekholm et al. 2005b] .
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for k > j . We now recall that Ekholm, Etnyre, and Sullivan [Ekholm et al. 2005b,
Theorem 4.19] proved that 6nT2 j+1 is not Legendrian isotopic to 6nT2k+1 for
k > j + 1 and j ∈ N.

Hence we get infinitely many pairs of exact Lagrangian cobordant and not pair-
wise Legendrian isotopic Legendrian n-tori in R2n+1. �

Remark 4.10. Given n≥1, we observe that Theorem 4.19 of [Ekholm et al. 2005b]
implies that all the Legendrian n-tori from Proposition 1.6 are not distinguished by
the classical invariants.
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