
A note on LASSI: a lightweight authenticated key
agreement protocol for fog-enabled IoT deployment
Zhengjun Cao (caozhj@shu.edu.cn)

Shanghai University

Research Article

Keywords: Authentication, Key agreement, Key transfer, Salted password hashing, Symmetric key
encryption

Posted Date: March 11th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2658557/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2658557/v1
mailto:caozhj@shu.edu.cn
https://doi.org/10.21203/rs.3.rs-2658557/v1
https://creativecommons.org/licenses/by/4.0/

A note on “LASSI: a lightweight authenticated key
agreement protocol for fog-enabled IoT deployment”

Zhengjun Cao

Abstract We show that the scheme [Int. J. Inf. Sec.,

21(6), 1373–1387] is flawed, in which the user encrypts
the temporary ID using a symmetric key encryption in
order to achieve the anonymity target. If the shared

key for such a symmetric key encryption is really avail-

able, the scheme can be greatly simplified. We want to

stress that the ultimate use of a key agreement scheme

is just to establish a shared key for some symmetric key

encryption, but not vise versa.

Keywords Authentication · Key agreement · Key

transfer · Salted password hashing · Symmetric key
encryption

1 Introduction

Very recently, Abdussami et al. [1] have presented a

key agreement scheme for fog-enabled IoT scenario, in

which there are four entities: IoT device, Fog node (FN),

Cloud server (CS), and User. The user will first au-

thenticate with the cloud server. The cloud server will

store the data sensed by the IoT devices received via

fog nodes and give access to the authorized users. IoT
devices and user devices are not trusted entities. It as-
sumes that the adversary can compromise the private
credentials such as secret keys and session keys. Its se-

curity requirements include user anonymity, integrity,

authentication, forward secrecy, and confidentiality.

Though the scheme is interesting, we find it is flawed

because the user has to invoke a symmetric key en-

cryption to securely transfer the temporary ID to CS.

But symmetric key encryption is a heavy cryptographic

Zhengjun Cao
Department of Mathematics, Shanghai University, Shangda
Road 99, Shanghai 200444, China.
E-mail: caozhj@shu.edu.cn

primitive, for which the final key derived from a key

agreement scheme is just served as a shared key. The
scheme has confused key transfer with key agreement.

We also find that the scheme is vulnerable to guess-
ing password attack, because the password is not salted.

It neglects the fact that an identifier is the character-
istics that distinguish it from others, which should be
public and easily available. We want to stress that an

identifier can be hidden in a concrete session, but it

is publicly accessible in the system, otherwise such an

identifier loses its signification.

2 Preliminaries

Key agreement, key distribution, key exchange, and key

transfer [3], are often confused, but their common target
is to establish a shared key between users. The result-
ing key in a key agreement scheme is not preexisting.

However, the resulting key in a key transfer scheme is

preexisting, which should be recovered intactly.

The difference between key agreement and key trans-

fer seems unfamiliar to some researchers. To illustrate

it, we now review the popular Diffie-Hellman key ex-

change [2] and RSA [4] (see Table 1).

Apparently, RSA requires a complex system setup,

which relies on Public Key Infrastructure (PKI) to en-

able Bob to invoke Alice’s true public key (n, e). Its

authentication originates directly from the reliance on

PKI. Such reliance could be unavailable for some sce-

narios. Whereas, a lightweight key agreement scheme is

more applicable to this case.

It’s worth noting that the usual size of RSA modulus

is greater than 2048 bits. The corresponding modular

exponentiation is expensive for limited power devices.

So, RSA is not directly used for transferring data, in-

stead transferring session keys.

2 ZJ Cao

Table 1: Diffie-Hellman key exchange versus RSA

Diffie-Hellman key exchange RSA

Setup. A prime p, a generator g ∈ F∗
p. Setup. Alice picks two big primes p, q,

computes n = pq. Pick e and compute d

such that ed ≡ 1 mod φ(n). Set the public
key as (n, e), the private key as d.

A −→ B. Alice picks an integer xA to
compute yA ≡ gxA mod p.
Send yA to Bob.

A←− B. Bob picks an integer xB to A←− B. For m ∈ Z∗
n, Bob checks the certification of

compute the key k ≡ y
xB

A
mod p, public key (n, e), and computes c ≡ me mod n.

and yB ≡ gxB mod p. Send c to Alice.
Send yB to Alice.

A ↓. Alice computes the key A ↓. Alice computes m ≡ cd mod n.
k ≡ y

xA

B
mod p. (Usually, m is a session key, not a concrete message)

3 Review of the scheme

Let IDi, PWi be the identity and password of ith user,

respectively. H(·) is a hash function. A physically un-

clonable function (PUF) responses differ from one dif-

ferent PUF instance for the same challenge, but it gives

the same response for the same challenge in an instance.
The user registration with cloud server and mutual au-
thentication between them can be depicted as follows

(see Table 2).

4 A paradox in the scheme

In the scheme the user has to use a symmetric key
encryption to transfer the new temporary identifier,

Tidnew, i.e.,

Bi = EH(Ri1∥Tid)(Ai∥Tid∥TU∥Tidnew) (1)

The fingerprint H(Ri1∥Tid) acts as a session key.

We find the scheme tries to use the current session

key to negotiate a new session key H(Tid∥Ri1∥TC). But

there is no ultimate difference between

H(Ri1∥Tid) and H(Tid∥Ri1∥TC),

when they are used for session keys. Both are random
outputs of a same hash function corresponding to two

different inputs.

As we know, a symmetric key encryption is rarely

used for transferring session keys because it requires

that both sides know a pre-agreed secret key. It becomes

a paradox to use a shared secret key to merely negotiate

a new secret key.

5 A possible revision

As we discussed before, the negotiated key is ultimately

used for a subsequent symmetric key encryption to trans-

fer data. So, it is unnecessary to separate the target of

mutual authentication and that of data transfer. In the

proposed scenario, we find, the user and cloud server

can concurrently achieve the two targets. See the fol-

lowing Table 3.

In the revised scheme, the ciphertext is

Ĉ = EH(Ri1∥Tid)(Ai∥Tid∥TU∥Tidnew∥h∥m) (2)

in which two more components h,m are simultaneously

encrypted. Its confidentiality comes directly from the

original scheme. Besides, the checking of

h = H(Ri1∥Tidnew) (3)

suffices for mutual authentication. Any adversary can-
not generate such a fingerprint corresponding to the

random temporary identifier Tidnew, because the com-

ponent Ri1 are only known to the legal user and the

cloud server.

6 On the signification of an identifier

ID-based encryption introduced by Shamir [5], is a type
of public-key encryption in which the public key of a
user is some unique information about the user’s iden-
tity. Parties may encrypt messages with no prior distri-

bution of keys between individual participants. This is

very useful in cases where pre-distribution of authenti-

cated keys is inconvenient or infeasible.

The discussed threat model assumes that user de-

vices are not trusted entities. The data stored in user

devices can be retrieved by using the power analysis at-

tack (see §3.3, [1]). In order to protect the user’s identity

A note on one key agreement 3

Table 2: User registration and authentication with cloud server

User Cloud server

Registration

Select Idi, PWi, and compute
Ai = H(Idi∥PWi)⊕ ri, where
ri is a random number.
Pick a temporary identity Tid.
Generate challenge-response pairs
Ci = (Ci1, Ci2, · · ·),

Ri = (Ri1, Ri2, · · ·) by PUFi(·).
Ai,Tid,Ci,Ri

=============⇒
secure channel

Store {Ai, ri, Tid, Ci}. Store {Ai, Tid, Ci, Ri} for the user.

Mutual authentication and key agreement

Enter Idi, PWi. The user device
checks if Ai = H(Idi∥PWi)⊕ ri.
Generate the response Ri1, Check if TC − TU ≤ △T .
and select Tidnew, the Decrypt Bi and check
time-stamp TU . Compute the consistency of Ai, Tid.

Bi = EH(Ri1∥Tid)
(Ai∥Tid∥TU∥Tidnew).

Bi,TU ,Ci1,Tid−−−−−−−−−−−−→
open channel

Update Tid with Tidnew. Compute

SC = H(Tid∥Ri1∥TC), qi = H(SC∥Ai),

Check if TU − TC ≤ △T .
Di,TC ,qi

←−−−−−−−−−−−− Di = EH(Ri1∥Tid)
(Ai + 1∥TC).

Decrypt Di. Check the consistency
of Ai + 1. If ok, compute
SU = H(Tid∥Ri1∥TC), and
check if qi = H(SU∥Ai).

Subsequent data transfer

For a message m, compute Compute the plaintext

the ciphertext Ĉ = ESU
(m)

Ĉ
−−−−−−→ m = DSC

(Ĉ)

Table 3: A possible revision

User Cloud server

Data transfer
Enter Idi, PWi. The user device
checks if Ai = H(Idi∥PWi)⊕ ri.
Generate the response Ri1, Check if TC − TU ≤ △T .

and select Tidnew, the time-stamp Decrypt Ĉ and check
TU . For a message m, compute the consistency of Ai, Tid.
SU = H(Ri1∥Tid), Verify that
h = H(Ri1∥Tidnew), h = H(Ri1∥Tidnew).

Ĉ = ESU
(Ai∥Tid∥TU∥Tidnew∥h∥m).

Ĉ,TU ,Ci1,Tid−−−−−−−−−−−−→
open channel

Update Tid with Tidnew.

and password, the user device only stores {Ai, Tid, ri, Ci}.

It claims that the adversary cannot get the true identity
Idi and password PWi even if the device is compro-

mised, under the assumption that guessing the pass-
word and identity of the user separately is possible,

whereas guessing both parameters in polynomial time

is impractical.

The assumption ignores a basic fact: any identifier

in the whole system, which is the characteristics that

distinguish it from others, is public and easily avail-

able. Notice that an identifier can be hidden in a con-

crete session, but it is publicly accessible in the system.

Some researchers have neglected the difference between

session-invisible identifier and system-visible identifier.

In view of this fact, we find, the scheme is vulnera-

ble to guessing password attack. Actually, according to

the assumption a powerful adversary can access Ai, ri
which are stored in a target user device. The target

Idi is also accessible because it is a system-visible pa-

rameter, otherwise such an identifier loses its significa-

tion. So, the adversary can test password dictionaries

to search for a password such that

H(Idi∥password) = Ai ⊕ ri

4 ZJ Cao

By the way, it is common knowledge to use salted

password hashing to improve password security, in which
the salt is a random string added to a password before
it’s hashed, making it difficult for an attacker to retrieve

the original password without having access to both the

fingerprint and the salt. The scheme has deviated from

this usual route.

7 Conclusion

In this note, we show that the Abdussami et al.’s key

agreement scheme is flawed. We clarify the difference

between key transfer and key agreement. We also re-

iterate the signification of an identifier. The findings

could be helpful for the future work on designing key

agreement schemes.

Declarations

The author has no financial or proprietary interests in

any material discussed in this article.

Data Availability Statements

All data generated or analysed during this study are

included in this published article.

References

1. Abdussami, M., Amin, R., Vollala, S.: LASSI: a
lightweight authenticated key agreement protocol for fog-
enabled iot deployment. Int. J. Inf. Sec. 21(6), 1373–1387
(2022)

2. Diffie, W., Hellman, M.: New directions in cryptography.
IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

3. Menezes, A., Oorschot, P., Vanstone, S.: Handbook of Ap-
plied Cryptography. CRC Press, USA (1996)

4. Rivest, R., Shamir, A., Adleman, L.: A method for ob-
taining digital signatures and public-key cryptosystems.
Commun. ACM 21(2), 120–126 (1978)

5. Shamir, A.: Identity-based cryptosystems and signature
schemes. In: Proceedings of Annual Cryptology Confer-
ence, Advances in Cryptology (CRYPTO’84), pp. 47–53.
Santa Barbara, California, USA (1984)

