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A NOTE ON LIGHTLIKE HYPERSURFACES OF

SEMI-RIEMANNIAN SPACE FORM

YANING WANG AND XIMIN LIU

Abstract. In this paper, we mainly study lightlike hypersurfaces of
semi-Riemannian space form. Our main result is a classification theo-
rem of screen conformal lightlike hypersurfaces. Also, we obtain some
geometric properties of lightlike hypersurfaces with a conformal Killing
distribution.

1. Introduction

Since the intersection of tangent bundle and the normal bundle of a light-
like submanifold is not trivial, there are more difficulties in studying lightlike
geometry than in the non-degenerate case. It is well known that lightlike
geometry have been studied by K. L. Duggal and A. Bejancu [2, 3] and D.
N. Kupeli [9] with different approaches. Recently, many geometers inves-
tigated lightlike hypersurfaces by using the fundamental knowledge intro-
duced by Duggal-Bejancu with various geometric conditions and obtained
many important results. For example, D. H. Jin [6] proved a classification
theorem of lightlike hypersurface M with totally umbilical screen distribu-
tion of a semi-Riemannian space form; C. Atindogbe and K. L. Duggal [1]
introduced screen conformal lightlike hypersurface and proved that its in-
duced Ricci curvature tensor is symmetric. For more related results in this
field, we refer the readers to the recent monographs by Duggal-Jin [4] and
Duggal-Sahin [5], respectively.

In this paper, we mainly study a screen conformal lightlike hypersurface
M immersed in a semi-Riemannian space form and obtain a classification
theorem of M . Also, we investigate lightlike hypersurface with a conformal
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Killing radical distribution and transversal distribution respectively which
were introduced by D. H. Jin and J. W. Lee [8].

2. Preliminaries

In this section, we follow [3] developed by Duggal-Bejancu for the nota-
tions and fundamental equations for lightlike hypersurface of semi-Riema-
nnian manifolds.

A submanifold (M, g) of dimension m immersed in a semi-Riemannian
manifold (M, g) of dimension (m+n) is called a lightlike submanifold if the
metric g induced from ambient space is degenerate and the radical distri-
bution Rad(TM) is of rank r, where m ≥ 2 and 1 ≤ r ≤ n. In particular,
(M, g) is called a lightlike hypersurface if n = 1 and r = 1. It is well known
that the radical distribution is given by Rad(TM) = TM ∩ TM⊥, where
TM⊥ is called the normal bundle of M in M. Thus there exists a non-
degenerate complementary distribution S(TM) of Rad(TM) in TM , which
is called the screen distribution on M . Thus we have

TM = Rad(TM)⊕orth S(TM), (2.1)

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by (M, g, S(TM)).

Theorem 2.1. [3] Let (M, g, S(TM)) be a lightlike hypersurface of a semi-

Riemannian manifold (M, g), Then there exists a unique lightlike vector

bundle tr(TM) of rank 1 over M , such that for any non-zero section ξ of

TM⊥ on a coordinate neighborhood U ⊂ M , there exists a unique section N

of tr(TM) on U satisfying:

g(N, ξ) = 1, g(N,N) = g(N,W ) = 0, ∀ W ∈ Γ(S(TM)|U ). (2.2)

Hence for any screen distribution S(TM) we have a unique bundle tr(TM)
which is the complementary vector bundle to TM in TM |M and satisfies
(2,2). Then we have the following decompositions:

TM |M = S(TM)⊕orth

(

Rad(TM)⊕ tr(TM)
)

= TM ⊕ tr(TM). (2.3)

We call tr(TM) and N the transversal vector bundle and the null transversal
vector field of M with respect to S(TM) respectively.

Let P be the projection morphism of TM on S(TM) with respect to the
decomposition (2.1) and ∇ be the Levi-Civita connection of M . For any
X,Y ∈ Γ(TM), N ∈ Γ(tr(TM)) and ξ ∈ Γ(Rad(TM)), the Gauss and
Weingarten formulas of M and S(TM) are given by

∇XY =∇XY +B(X,Y )N, (2.4)

∇XN =−ANX + τ(X)N, (2.5)
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and

∇XPY =∇∗

XPY + C(X,PY )ξ, (2.6)

∇Xξ =−A∗

ξX − τ(X)ξ, (2.7)

respectively, where ∇ and ∇∗ are the induced connections on TM and
S(TM) respectively, B and C are called locally second fundamental forms
of M and S(TM) respectively. AN and A∗

ξ are linear operators on TM and

S(TM) respectively and τ is a 1-form on TM defined by τ(X) = g(∇XN, ξ).
Since ∇ is a torsion-free and metric connection on M , it is easy to see that
B is symmetric and independent of the choice of a screen distribution and
satisfies

B(X, ξ) = 0, ∀ X ∈ Γ(TM). (2.8)

Denote a local 1-form η by η(X) = g(X,N) for all X ∈ Γ(TM), then the
induced metric g on M satisfies

(∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ), ∀ X,Y, Z ∈ Γ(TM), (2.9)

which means that ∇ is not a metric connection on M . But a simple compu-
tation implies that ∇∗ is a metric connection on S(TM). The above local
second fundamental forms B and C of M and S(TM) are related to their
shape operators by

B(X,Y ) = g(A∗

ξX,Y ), g(A∗

ξX,N) = 0, (2.10)

C(X,PY ) = g(ANX,PY ), g(ANX,N) = 0, (2.11)

for any X,Y ∈ Γ(TM) and N ∈ Γ(tr(TM)).
From the above equations we see that A∗

ξ and AN are Γ(S(TM))-valued
shape operators related to B and C respectively, and A∗

ξ is self-adjoint on
TM such that

A∗

ξξ = 0. (2.12)

Donate by R, R and R∗ the curvature tensor of semi-Riemannian connec-
tion ∇ of M , the induced connection ∇ on M and the induced connection
∇∗ on S(TM) respectively, we obtain the following Gauss-Codazzi equations
for M and S(TM).

g(R(X,Y )Z,PW )

= g(R(X,Y )Z,PW ) +B(X,Z)C(Y, PW )−B(Y, Z)C(X,PW ), (2.13)

g(R(X,Y )Z, ξ) = g(R(X,Y )Z, ξ)

= (∇XB)(Y, Z)− (∇Y B)(X,Z) +B(Y, Z)τ(X)−B(X,Z)τ(Y ), (2.14)

g(R(X,Y )Z,N) = g(R(X,Y )Z,N), (2.15)
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g(R(X,Y )PZ,N) = (∇XC)(Y, PZ)− (∇Y C)(X,PZ)

+ C(X,PZ)τ(Y )− C(Y, PZ)τ(X), (2.16)

g(R(X,Y )PZ, PW ) = g(R∗(X,Y )PZ, PW )

+B(Y, PW )C(X,PZ)−B(X,PW )C(Y, PZ), (2.17)

for all X,Y, Z,W ∈ Γ(TM), ξ ∈ Γ(Rad(TM)) and N ∈ Γ(tr(TM)).

3. Screen conformal lightlike hypersurfaces

In this section, we consider a class of lightlike hypersurface which is called
screen conformal lightlike hypersurface, defined as following.

Definition 3.1. [1] A lightlike hypersurface (M, g, S(TM)) of a semi-Riema-
nnian manifold is called screen locally conformal if the shape operators AN

and A∗

ξ of M and S(TM) respectively, are related by

ANX = ϕA∗

ξX, ∀ X ∈ Γ(TM), (3.1)

where ϕ is a non-vanishing smooth function on a neighborhood U in M .
In particular, M is said to be screen locally homothetic if ϕ is non-zero
constant.

In case U = M the screen conformality is global. In the sequel, by a
screen conformal we shall mean screen locally conformal unless otherwise
specified. Notice that by (2.10) and (2.11) we know that M is said to be
screen conformal if and only if

C(X,PY ) = ϕB(X,Y ), ∀ X,Y ∈ Γ(TM). (3.2)

Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riemannian man-
ifold. Then, S(TM) is said to be totally umbilical if on any coordinate neigh-
borhood U ⊂ M , there exists a smooth function γ such that AN = γPX for
any X ∈ Γ(TM), or equivalently,

C(X,PY ) = γg(X,Y ), ∀ X,Y ∈ Γ(TM). (3.3)

In case γ = 0 on U , S(TM) is said to be totally geodesic.

Lemma 3.2. [6] Let (M, g, S(TM)) be an (m + 1)(m > 2)-dimensional

lightlike hypersurface of a semi-Riemannian space form (M(c), g) such that

S(TM) is totally umbilical. Then C = 0 or B = 0. Moreover,

(1) C = 0 and hence S(TM) is totally geodesic and c = 0, or
(2) B = 0 and hence M is totally geodesic immersed in M(c) and the

induced connection ∇ on M is metric.
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Differentiating (3.2) gives

(∇XC)(Y, PZ) = X(ϕ)B(Y, PZ) + ϕ(∇XB)(Y, PZ). (3.4)

Substituting (2.14) and (2.16) into (3.3), we have

g(R(X,Y )PZ,N)− C(X,PZ)τ(Y ) + C(Y, PZ)τ(X)

=X(ϕ)B(Y, PZ)− Y (ϕ)B(X,PZ) + ϕg(R(X,Y )Z, ξ)

− ϕB(Y, Z)τ(X) + ϕB(X,Z)τ(Y ).

(3.5)

Notice that M is a semi-Riemannian space form, it follows from (2.10) and
(3.2) and the above equation that

B(X,Z)
(

Y (ϕ)− 2ϕτ(Y )
)

−B(Y, Z)
(

X(ϕ)− 2ϕτ(X)
)

=cη(Y )g(X,Z)− cη(X)g(Y, Z), ∀ X,Y ∈ Γ(TM).
(3.6)

Replacing Y by ξ in the above equation and using (2.10), we have

βB(X,Y ) = cg(X,Y ), ∀ X,Y ∈ Γ(TM), (3.7)

where β = ξ(ϕ)−2ϕτ(ξ). Thus, we have the following classification theorem
for screen conformal lightlike hypersurface.

Theorem 3.3. Let (M, g, S(TM)) be an (m+1)-dimensional screen confor-

mal lightlike hypersurface of a semi-Riemannian space form (M(c), g) and

m > 2. Then

(1) if β = 0, we have c = 0,
(2) if β 6= 0, we also have c = 0. Moreover, in this case S(TM) and M

are totally geodesic immersed in M and M(c) respectively.

Proof. If β = 0, from (3.7) it is easy to see c = 0. Now we assume that
β 6= 0. If c 6= 0, from (3.2) and (3.7) we know that

B(X,Y ) =
c

β
g(X,Y ) and C(X,PY ) =

ϕc

β
g(X,PY ), (3.8)

which means that both S(TM) and M are totally umbilical. By applying
the Lemma 3.3 we get B = 0 or C = 0, which is equivalent to c = 0 or
ϕ = 0 by using (3.8). Notice that ϕ = 0 implies that β = 0, there is a
contradiction to the assumption. Thus we have c = 0 and B = C = 0 which
completes the proof. �

For a non-zero constant ϕ, we have ξ(ϕ) = 0. So we have the following
corollary following from Theorem 3.3.

Corollary 3.4. Let (M, g, S(TM)) be an (m + 1)-dimensional screen ho-

mothetic lightlike hypersurface of a semi-Riemannian space form (M(c), g)
and m > 2. Then

(1) if τ(ξ) = 0, we have c = 0,
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(2) if τ(ξ) 6= 0, we have c = 0. Moreover, in this case S(TM) and M

are totally geodesic immersed in M and M(c) respectively.

Recall the following notion of null sectional curvature following from [2, 3].
Let x ∈ M and ξ be a null vector of TxM . A plane H of TxM is called a null
plane directed by ξ if it contains ξ, gx(ξ,W ) = 0 for any W ∈ H and there
exists Wo ∈ H such that gx(Wo,Wo) 6= 0. Thus the null section curvature
of H with respective to ξ and the induced connection ∇ of M , is defined as
a real number

Kξ(H) =
gx(R(W, ξ)ξ,W )

gx(W,W )
,

where W 6= 0 is any vector in H independent with ξ. Note that the authors
in [10] proved that an n(n ≥ 3)-dimensional Lorentzian manifold is of con-
stant curvature if and only if its null sectional curvatures are everywhere
zero.

Theorem 3.5. Let (M, g, S(TM) be a screen conformal lightlike hypersur-

face of the semi-Riemannian space form (M(c), g), then the null sectional

curvature of M vanishes.

Proof. It follows from (2.13) that

g(R(X,Y )Z,PW ) = g(R(X,Y )Z,PW ) +B(Y, Z)C(X,PW )

−B(X,Z)C(Y, PW ) = ϕ
(

B(Y, Z)B(X,W )−B(X,Z)B(Y,W )
)

. (3.9)

From (2.8), we obtain Kξ(H) = 0. Then the proof is complete. �

4. Conformal Killing distribution

We need the following definition given by D. H. Jin in [7].

Definition 4.1. [7] Let M be a semi-Riemannian manifold, a vector field X

on M is said to be a conformal Killing vector field if LXg = 2αg for smooth
function α, where L denotes the Lie derivative with respect to X.

Let (M, g) be a semi-Riemannian space form, then it follows from the
above definition that

X(g(Y, Z))− g([X,Y ], Z)− g(Y, [X,Z]) = 2αg(Y, Z) (4.1)

for any X,Y, Z ∈ Γ(TM). In particular, X is called a Killing vector field if
α = 0. A distribution G on M is said to be a conformal Killing distribution
if each vector field belonging to G is a conformal Killing vector field.

Theorem 4.2. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-

Riemannian space form (M, g). If Rad(TM) is a conformal Killing distri-

bution, i.e., Lξg = 2αg for ξ ∈ Γ(Rad(TM)), then we have

B(X,Y ) = −αg(X,Y ), ∀ X,Y ∈ Γ(TM), (4.2)
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where α is a smooth function on M.

Proof. Notice that ∇ is torsion-free connection, then it follows from (4.1)
that

2αg(Y, Z) =g(∇Xξ, Z) + g(∇Zξ, Y )

=− g(A∗

ξY, Z)− g(A∗

ξZ, Y ), ∀ Y, Z ∈ Γ(TM).
(4.3)

Since B is symmetric on Γ(TM), then we have B(X,Y ) = −αg(X,Y ) fol-
lowing from the above equation. Thus, the proof is complete. �

Theorem 4.3. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-

Riemannian space form (M, g). If Rad(TM) is a conformal Killing distri-

bution, then the smooth function α satisfies the following equation

ξ(α) + α2 + ατ(ξ) = 0. (4.4)

Proof. Differentiating (4.2) gives

(∇XB)(Y, Z) = −X(α)g(Y, Z)− α(∇Xg)(Y, Z). (4.5)

Substituting (2.9) and (2.14) into (4.5) and using (4.2), we have

B(X,Z)τ(Y )−B(Y, Z)τ(X)

=Y (α)g(X,Z)−X(α)g(Y, Z) + α
(

B(Y, Z)η(X)−B(X,Z)η(Y )
)

.
(4.6)

It follows from (4.6) and (4.2) that

g(X,Z)
(

Y (α) +α2η(Y ) +ατ(Y )
)

− g(Y, Z)
(

X(α) +α2η(X) +ατ(X)
)

= 0.
(4.7)

Replacing Y by ξ in the above equation, we have

g(X,Z)
(

ξ(α) + α2 + ατ(ξ)
)

= 0, ∀ X,Z ∈ Γ(TM). (4.8)

Thus, the proof is complete. �

Corollary 4.4. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-

Riemannian space form (M, g) with a conformal Killing radical distribution.

If α is a constant, then either α = 0 or α = −τ(ξ).

Proof. Using Theorem 4.3 and the assumption that α is a constant, we have
α2 + ατ(ξ) = α(α+ τ(ξ)) = 0. �

Lemma 4.5. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-Riema-

nnian space form (M, g). If tr(TM) is a conformal Killing distribution, i.e.,

LNg = 2ρg for N ∈ Γ(tr(TM)), then we have

C(X,Y ) + C(Y, Z) = −2ρg(X,Y ), ∀ X,Y ∈ Γ(S(TM)), (4.9)

where ρ is a smooth function on M .
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Proof. Notice that ∇ is torsion-free connection, then it follows from (4.1)
that

2ρg(Y, Z) =g(∇Y N,Z) + g(∇ZN,Y )

=− g(ANY, Z)− g(ANZ, Y ) + τ(Y )η(X) + τ(Z)η(Y ),
(4.10)

for any vector fields X,Y, Z ∈ Γ(TM). By using (2.11) then we have
C(Y, PZ)+C(Z,PY ) = −2ρg(X,Y )+τ(Y )η(Z)+τ(Z)η(Y ) following from
the above equation. Thus, the proof is complete. �

Corollary 4.6. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-

Riemannian space form (M, g) with a conformal Killing transversal distri-

bution, i.e., LNg = 2ρg for N ∈ Γ(tr(TM)). If S(TM) is integrable, then

we have

C(X,Y ) = −ρg(X,Y ), ∀ X,Y ∈ Γ(S(TM)). (4.11)

Proof. Notice that ∇ is torsion-free connection, then it follows from (2.5)
that

g(N, [X,Y ]) =g(∇XN,Y )− g(∇Y N,X)

=g(ANY,X)− g(ANX,Y ), ∀ X,Y ∈ Γ(S(TM)).
(4.12)

If S(TM) is integrable, from (4.12) we know that C is symmetric on S(TM).
Thus, we complete the proof by using (4.9). �

Note that C(ξ, PX) = g(ANξ, PX), then we have the following corollary.

Corollary 4.7. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-

Riemannian space form (M, g) with a conformal Killing transversal dis-

tribution. If S(TM) is integrable and ANξ = 0, then S(TM) is totally

umbilical.

Theorem 4.8. Let (M, g, S(TM)) be a lightlike hypersurface of a semi-

Riemannian space form (M, g) with a conformal Killing transversal distri-

bution, i.e., LNg = 2ρg for N ∈ Γ(tr(TM)). If S(TM) is integrable, then

we have

ξ(ρ)− ρτ(ξ) = 0, (4.13)

where ρ is a smooth function on M .

Proof. By differentiating (4.11), then for any X,Y, Z ∈ Γ(S(TM)) we have

(∇XC)(Y, Z) = −X(ρ)g(Y, Z)− ρ(∇Xg)(Y, Z). (4.14)

Substituting (2.9) and (2.16) into (4.14) and using (4.2), we have

g(X,Z)
(

Y (ρ)− ρτ(Y )
)

− g(Y, Z)
(

X(ρ)− ρτ(X)
)

= 0. (4.15)

Replacing Y by ξ in the above equation, we obtain

g(X,Z)
(

ξ(ρ)− ρτ(ξ)
)

= 0, ∀ X,Z ∈ Γ(S(TM)). (4.16)
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Thus, the proof is complete. �
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