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Multivariate versions of the law of large numbers and the central limit theorem for martingales are

given in a generality that is often necessary when studying statistical inference for stochastic process

models. To illustrate the usefulness of the results, we consider estimation for a multidimensional

Gaussian diffusion, where results on consistency and asymptotic normality of the maximum likelihood

estimator are obtained in cases that were not covered by previously published limit theorems. The

results are also applied to martingales of a different nature, which are typical of the problems

occurring in connection with statistical inference for stochastic delay equations.
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1. Introduction

The law of large numbers and the central limit theorem for martingales have proved very

useful tools for obtaining asymptotic results about estimators of parameters in stochastic

process models. However, the multivariate versions of these results published so far have

been stated either with conditions that are too strict for many statistical applications, or in a

generality that makes application to particular statistical models very dif®cult. In this paper

we give multivariate versions of the law of large numbers and the central limit theorem for

martingales in a generality that seems to us useful in many statistical applications.

When studying inference for stochastic process models where the data form a single

trajectory, a central limit theorem for martingales is often a useful tool for obtaining

asymptotic distributional results as the length of the observation period goes to in®nity; see,

for example, Barndorff-Nielsen and Sùrensen (1991; 1994). What is needed is a central

limit theorem for a properly normalized martingale as the time goes to in®nity. When the

statistical parameter is multidimensional or of in®nite dimension, a multivariate central limit

theorem is needed. We brie¯y review some previously published multivariate central limit

theorems, which have proved useful in the type of statistical application indicated above

when the models may be non-ergodic. For a review of older work on mainly one-

dimensional martingales, see Helland (1982). A multidimensional martingale central limit

theorem applicable to some non-ergodic models was given by Hutton and Nelson (1984).
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However, their assumption that the quadratic variation matrix converges when normalized

by a scalar is rather restrictive. In order to be able to obtain results for multivariate

martingales whose coordinates increase at different rates, a situation which occurs quite

naturally when analysing many statistical stochastic process models, Sùrensen (1991)

published a result in which the quadratic variation matrix converges when normalized by a

diagonal matrix. This has also turned out to be too restrictive because, for instance, it does

not cover the case where all components of the martingale increase at the same rate, but

where there are directions different from the main axes in which the rate of increase is

smaller. This happens in some stochastic process models; see Dietz (1992), Stockmarr

(1996) and Gushchin and KuÈchler (1997). In Section 2 we give a central limit theorem for

multivariate martingales, where the quadratic variation matrix is assumed to converge when

normalized by a suitable full matrix. This more general result also covers martingales of the

type just described. In Section 3 we demonstrate how it can be used to ®nd the asymptotic

distribution of the maximum likelihood estimator in multivariate Gaussian diffusion models

in cases that could not be treated by the previous, less general, central limit theorems. In

Section 4 we apply the central limit theorem to a type of martingale that occurs in

connection with investigations of statistical inference for solutions of stochastic delay

equations.

Laws of large numbers for martingales are useful tools for proving consistency of

estimators in statistical models of the kind described in the previous paragraph. These

results state that, as time tends to in®nity, a martingale normalized by its quadratic variation

converges to zero almost surely or in probability on the set where the quadratic variation

tends to in®nity. A ®rst result was published by LeÂpingle (1978), and the paper by Liptser

(1980) clari®ed the situation for one-dimensional martingales. The strong law of large

numbers for martingales is proved by means of a generalization of the Kronecker lemma.

Melnikov (1986) was able to prove a multivariate version of the strong law of large

numbers for martingales under the assumption that the limsup of the ratio of the largest to

the smallest eigenvalue of the quadratic variation matrix is ®nite. This assumption is rather

strong, and in several statistical applications Melnikov's result cannot be applied. Melnikov's

condition was considerably weakened in the laws of large numbers for martingales by Le

Breton and Musiela (1986; 1989) and Kaufmann (1987), but their conditions are still too

strong to cover cases where some eigenvalues of the quadratic variation increase linearly

while others increase exponentially, which can happen even in relatively simple statistical

models. Le Breton and Musiela (1987) and Dzhaparidze and Spreij (1993) proved a strong

law of large numbers for multivariate martingales which are Gaussian or which have

deterministic quadratic variation, respectively. In these two papers the only condition is,

essentially, that the inverse of the quadratic variation matrix tends to zero. The assumption

that the martingale is Gaussian or that the quadratic variation matrix is deterministic is also

too restrictive in many applications. In Section 2 a weak law of large numbers for

multivariate martingales is derived as a corollary to the general central limit theorem. The

result holds without any further conditions, so by proving only convergence in probability,

we avoid the restrictive conditions in the strong laws of large numbers for multivariate

martingales published so far and obtain a more broadly applicable result. Apart from the

applications mentioned above, the weak law of large numbers for multivariate martingales
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can be used to prove consistency of least-squares estimators in a very general class of

semimartingale models; see Melnikov and Novikov (1990).

2. Limit theorems

Let (Ù, F , fF tg, P) be a complete ®ltered probability space. Let M � (M1, . . . , Mk)T be a

k-dimensional square-integrable martingale with respect to fF tg, that is, the coordinates of

Mt are square-integrable for all t > 0. We can therefore, for all t > 0, de®ne Ht � E(Mt M
T
t ),

where T denotes transposition. We assume that the sample paths of M are right-continuous

with limits from the left. Let [M] t be the quadratic variation matrix of M , that is, the (i, j)th

entry of [M] t is [M i, M j] t. By I k we denote the k 3 k identity matrix, and by det(A) the

determinant of a square matrix A, while A1=2 denotes the unique positive semide®nite square

root of a positive semide®nite matrix A. The concepts of stable and mixing convergence used

in the following theorem were introduced by ReÂnyi (1958; 1963) and further developed by

Aldous and Eagleson (1978); see also the discussion in Hall and Heyde (1980).

Theorem 2.1. Suppose there exists a family of invertible non-random k 3 k matrices

fKt : t . 0g, with t 7! Kt continuous, such that, as t!1,

(a) Kt ! 0;

(b) Kit E(sups< tjnMisj)! 0, i�1,. . . , k, where Kit �
Pk

j�1jK jitj and nMis �
Mis ÿ M isÿ;

(c) Kt[M] t K
T
t ! ç2 in probability, where ç2 is a random positive semide®nite matrix;

and

(d) KtHtK
T
t ! Ó, where Ó is a positive de®nite matrix.

Then we have the following results on convergence in distribution as t!1:

KtMt ! Z (stably), (2:1)

where the distribution of Z equals that of ç2U , U being a standard normal distributed k-

dimensional random vector independent of ç2. This distribution is the normal variance

mixture with characteristic function j(u) � E(exp[ÿ1
2
uTç2u]), u � (u1, . . . , uk)T. Moreover,

(KtMt, Kt[M] t K
T
t )! (ç2U , ç2): (2:2)

Provided that P(det(ç2) . 0) . 0, we have the following results on convergence in

distribution conditional on fdet(ç2) . 0g:
(Kt[M] t K

T
t )ÿ1=2 KtMtjfdet(ç2) . 0g ! N (0, Ik) (mixing) (2:3)

and

MT
t [M]ÿ1

t Mtjfdet(ç2) . 0g ! ÷2(k) (mixing): (2:4)

Proof. To prove (2.1) it suf®ces to show that xT KtMt ! xT Z (stably) for all x 2 Rknf0g (the

CrameÂr±Wold device). For every t . 0, the process
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X t
s � (xT KtHtK

T
t x)ÿ1=2xT KtMst, 0 < s < 1,

is a one-dimensional square-integrable martingale with respect to the ®ltration fF stg. For t

large enough, xT KtHtK
T
t x . 0 because Ó is positive de®nite. Using (b) and (d), we see that

E( sup
0<s<1

jnX t
sj) < (xT KtHtK

T
t x)ÿ1=2max

i
jxij
X

j

K jtE(sup
s< t

jnM jsj)! 0,

as t!1. From (c) and (d) it follows that

[X t]1 � (xT KtHtK
T
t x)ÿ1xT Kt[M] t K

T
t x! (xTÓx)ÿ1xTç2x

in probability as t!1. Thus the class of processes X t, t . 0, satis®es the same conditions

as the martingales (3.6) in the proof of Theorem 2 in Feigin (1985). Therefore, it follows

from Feigin's proof that X t
1 converges stably in distribution to the zero-mean normal variance

mixture with the distribution of xTç2x as mixing distribution, that is, to the distribution of

xT Z.

The stability of (2.1) implies (2.2) and (2.3); see Aldous and Eagleson (1978). Remember

that on fdet(ç2) . 0g the matrix Kt[M] t K
T
t is positive de®nite for t large enough. The

result (2.4) follows immediately from (2.3). h

In applications one of the main problems is to ®nd the family of matrices fKt : t . 0g.
Based on (c) and (d) in Theorem 2.1, one might try to get an idea of how to choose Kt by

studying the rate of increase of the entries of Ht, but this is not always enough, because

these entries may all increase at the same rate even when M grows at different rates in

directions that are not parallel to the coordinate axes. Often one must search for a family

fKt : t . 0g of the form DtC, where Dt is a diagonal matrix, while C changes the

coordinate axes appropriately. We shall give examples in Sections 3 and 4.

Since Ht is positive semide®nite, there exists an orthogonal matrix Ot and a diagonal

matrix Dt with non-negative diagonal elements, such that Ht � OT
t DtOt. If we can use

Kt � D
ÿ1=2
t Ot or Kt � OT

t D
ÿ1=2
t Ot, then condition (d) in Theorem 2.1 is automatically

satis®ed.

The following weak law of large numbers follows immediately from Theorem 2.1.

Corollary 2.2. Assume the conditions of Theorem 2.1. Then [M] t is invertible on

fdet(ç2) . 0g for t suf®ciently large, and

[M]ÿ1
t Mt ! 0 (2:5)

in probability on fdet(ç2) . 0g as t!1.

Proof. The result follows from Theorem 2.1 because

[M]ÿ1
t Mt � KT

t (Kt[M] t K
T
t )ÿ1 KtMt,

where KtMt converges in distribution and hence is stochastically bounded,

(Kt[M] t K
T
t )ÿ1 ! (ç2)ÿ1 in probability on fdet(ç2) . 0g, and Kt ! 0. h
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3. Multidimensional Gaussian diffusions

In this section we consider the class of k-dimensional Gaussian diffusions given as solutions

to the stochastic differential equation

dXt � BX t dt � dWt, X0 � 0, (3:1)

where X t � (X1 t, . . . , Xkt)
T, B is a k 3 k matrix and W is a k-dimensional standard Wiener

process.

If è � (b11, . . . , b1k , . . . , bk1, . . . , bkk)T, then the likelihood function based on observa-

tion of X s for s 2 [0, t] is

Lt(è) � exp(Ntèÿ 1
2
èT Itè), (3:2)

where Nt is the k2-dimensional vector� t

0

X 1s dX 1s, . . . ,

� t

0

X ks dX1s, . . . ,

� t

0

X1s dX ks, . . . ,

� t

0

X ks dX ks

� �T

and It is the k2 3 k2 matrix

It �

Jt 0 � � � 0

0 J t
..
.

..

. . .
.

0

0 � � � 0 J t

0BBB@
1CCCA,

in which Jt is the k 3 k matrix
� t

0
X sX

T
s ds, which is almost surely invertible. The maximum

likelihood estimator is è̂t � Iÿ1
t Nt. Note that è̂t � Iÿ1

t (Itè� Mt) � è� Iÿ1
t Mt, where Mt is

the k2-dimensional square-integrable martingale

Mt �
� t

0

X 1s dW1s, . . . ,

� t

0

X ks dW1s, . . . ,

� t

0

X1sdW ks, . . . ,

� t

0

X ks dW ks

� �
:

Since [M] t � It, the consistency of è̂ follows if we can apply Corollary 2.2 to M . Moreover,

by Theorem 2.1, the asymptotic normality of (KtItK
T
t )1=2(Kÿ1

t )T(è̂t ÿ è) � (KtItK
T
t )ÿ1=2 KtMt

(or, more simply, that (è̂t ÿ è)T It(è̂t ÿ è) � MT
t Iÿ1

t Mt ! ÷2(k2)) also follows. We need to

®nd Kt such that (c) and (d) of Theorem 2.1 are satis®ed.

The solution to (3.1) is

X t �
� t

0

eB( tÿs) dWs: (3:3)

Suppose B can be diagonalized, that is, that there exists an invertible matrix C and a diagonal

matrix D such that B � Cÿ1 DC. Since Bn � Cÿ1 DnC, we ®nd that

CX t �
� t

0

eD( tÿs) d ~Ws, (3:4)

where ~Ws � CWs is a k-dimensional Wiener process with coordinate processes that are

typically not independent. In fact, h ~W i t � tCCT. Hence the (i, j)th entry of
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CJtC
T �

� t

0

CX sX
T
s CT ds (3:5)

is

aij(t) �
� t

0

� s

0

edi(sÿu) d ~Wiu

� s

0

edj(sÿu) d ~W ju ds, (3:6)

where di, i � 1, . . . , k, are the diagonal elements of D, i.e. the eigenvalues of B. If di . 0

and dj . 0, the Toeplitz lemma implies that

eÿ t(d i�dj)aij(t)! (di � dj)
ÿ1

�1
0

eÿd i u d ~Wiu

�1
0

eÿdj u d ~W ju

almost surely as t!1. If di , 0 and dj , 0, then tÿ1aij(t)! ÿæij=(di � dj) almost surely

as t!1, where æij is the (i, j)th entry of CCT. This is because the two processes under the

Lebesgue integral in (3.6) are in this case ergodic. Finally, suppose di . 0 and dj , 0. Then

tÿ1=2eÿdi taij(t)! 0 in probability as t!1 by a generalization of the Toeplitz lemma

because
� t

0
ed j( tÿs) d ~W js converges in distribution and hence is stochastically bounded.

Thus if all eigenvalues of B are real and different from zero, we can de®ne Kt by

Kt �

AtC 0 � � � 0

0 AtC
..
.

..

. . .
. ..

.

0 � � � 0 AtC

0BBB@
1CCCA,

where At is the diagonal matrix At � diag(j1(t), . . . , jk(t)), with

ji(t) � eÿd i t if di . 0

tÿ1=2 if di , 0:

�
We have shown that KtItK

T
t ! ç2(è) in probability as t!1, where ç2(è) is random if at

least one of the eigenvalues of B is positive. There is no loss of generality to assume that

di , 0 for i � 1, . . . , m and di . 0 for i � m� 1, . . . , k, where 0 < m < k. Then ç2 has the

form

ç2 �
ç2

1 O

OT ç2
2

 !
,

where O is an m 3 (k ÿ m) matrix with all entries equal to zero. To prove that ç2 is positive

de®nite it is enough to prove that each of the two matrices ç2
1 and ç2

2 is positive de®nite.

Obviously they are positive semide®nite, so it is enough to prove that they are invertible. To

impose necessary conditions for this to hold we need the concept of controllability. Let R and

V be d 3 d matrices, where V is positive semide®nite; then (R, V ) are called controllable if

the rank of the d 3 d2 matrix [V , RV , . . . , Rdÿ1V ] is d. We need the following result, which

is well known in control theory. For a proof, see Davis (1977, Chapter 4) or Chaleyat-Maurel

and Elie (1981, Lemma 1.10).
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Lemma 3.1. The matrix
� t

0
exp(sR)V exp(sRT) ds is invertible (that is, positive de®nite) for

t . 0 if and only if (R, V ) are controllable.

Now, ç2
1 �

�1
0

exp(sR1)V1 exp(sR1)ds, where R � diag(d1, . . . , , d m) and V1 is the upper

left m 3 m submatrix of CCT, so ç2
1 is positive de®nite if (R1, V1) are controllable. This is,

for instance, the case if V1 is invertible. The random matrix ç2
2 is positive de®nite if the

matrix ä with entries äij � (di � dj)
ÿ1 is positive de®nite. Since ä � �1

0

exp(sR2)V2 exp(sR2) ds, where R2 � diag(ÿd m�1, . . . , ÿdk) and V2 is the (k ÿ m) 3
(k ÿ m) matrix with all entries equal to one, we see that ç2

2 is positive de®nite if

(R2, V2) are controllable. This is the case if and only if the eigenvalues d m�1, . . . , d k are

all different.

We have now given conditions ensuring that (c) of Theorem 2.1 is satis®ed. Let us turn

to condition (d) in the same theorem. Since

E(aij(t)) � æij(di � dj)
ÿ2fe(d i�dj) t ÿ 1ÿ t(di � dj)g,

we see that AtCEè(Jt)C
T At ! Ó(è), where

Óij(è) �
æij(di � dj)

ÿ2, if di . 0 and dj . 0,

ÿæij(di � dj)
ÿ1, if di , 0 and dj , 0,

0, if di . 0 and dj , 0:

8<:
As Ht � Eè(It), we see that we just have to check that Ó is positive de®nite. Under the

assumption made earlier, that di , 0 for i � 1, . . . , m and di . 0 for i � m� 1, . . . , k,

where 0 < m < k, the matrix Ó is of the form

Ó �
Ó11 O

OT Ó22

 !
:

We have already seen that Ó11 � ç2
1 is positive de®nite if (R1, V1) is controllable. Note that

Ó22 �
�1

0
exp(sR2)V3 exp(sR2) ds, where the (i, j)th entry of the (k ÿ m) 3 (k ÿ m) matrix

V3 is æij=(di � dj), m� 1 < i, j < k. If V3 is invertible, (R2, V3) are controllable, so that by

Lemma 3.1 the matrix Ó22 is positive de®nite. That V3 is invertible follows in the same way

as the invertibility of ç2
1, if we assume that (R2, V4) are controllable, where V4 is the lower

right (k ÿ m) 3 (k ÿ m) submatrix of CCT. In particular, we can assume that V4 is invertible.

We have thus proved consistency and, after normalization as described above, asymptotic

normality of the maximum likelihood estimator provided that all eigenvalues of B are real

and different from zero, that all positive eigenvalues are different, and that CCT is positive

de®nite.

This could not have been done for all these values of B by means of, for example, the

martingale limit theorem in Sùrensen (1991). Consider, for instance, the two-dimensional

diffusion with

B � 1 0

1 ÿ1

� �
:

Then B2 equals the identity matrix, so eBu � I cosh u� B sinh u. Hence
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X t �

� t

0

e( tÿs) dW1s� t

0

sinh(t ÿ s) dW1s �
� t

0

eÿ( tÿs) dW2s

0BB@
1CCA:

It is not dif®cult to see that all entries of E(J t) are of order e2 t, and that

eÿ2 tE(J t)!
1
4

1
8

1
8

1
16

 !
,

which is singular, so there is no way of normalizing Jt and E(Jt) with a diagonal matrix to

obtain a non-singular limit. However, B can be diagonalized:

1 0

1 ÿ1

� �
� 2 0

1 1

� �
1 0

0 ÿ1

� �
1
2

0

ÿ1
2

1

� �
,

so the result proved above holds.

Maximum likelihood estimation for multivariate Gaussian diffusions has been studied by

several authors; see Le Breton (1977; 1984), Le Breton and Musiela (1982; 1985) and

Stockmarr (1996). None of these authors proved consistency or asymptotic normality in the

case where some eigenvalues of B are positive while others are negative.

4. Martingales with time delay

In this section, we consider limit results for martingales of the kind that typically occur in the

study of statistical inference for stochastic delay equations.

Assume that M (1) and M (2) are continuous martingales with hM (i), M ( j)i t � á(t), where

á(t) is independent of i, j 2 f1, 2g and differentiable with respect to t. We suppose further

that á9(t) has an almost surely ®nite limit, which we denote by á9(1). De®ne

Yi(t) �
� t

0

x0(t ÿ s) dM (i)
s , t > 0, i � 1, 2,

where

x0(u) � eë1 u � eë2 u, u 2 R,

with 0 , ë2 , ë1 ®xed. Then we have P-almost surely that

eÿë1 tYi(t)! Ui �
�1

0

eÿë1 s dM (i)(s), i � 1, 2,

as t!1.

For t > 0, de®ne the two-dimensional martingale
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Mt �

� t

0

Y1(s)dM (1)(s)� t

0

Y2(sÿ 1) dM (2)(s)

0BB@
1CCA,

which has the quadratic variation matrix

[M] t �

� t

0

Y 2
1(s) dá(s)

� t

0

Y1(s)Y2(sÿ 1) dá(s)� t

0

Y1(s)Y2(sÿ 1) dá(s)

� t

0

Y 2
2(sÿ 1) dá(s)

0BB@
1CCA:

Elementary calculations show that, after normalization by exp(ÿ2ë1 t), all entries of [M] t

tend to (random) ®nite limits as t!1,

exp(ÿ2ë1 t)[M] t ! (á9(1))2

2ë1

1 eÿë1

eÿë1 eÿ2ë1

� �
,

and that the limit matrix is singular. This can be seen as the normalization Kt[M] t Kt with

Kt � eÿë1 t I2. No other normalization of [M] t by deterministic diagonal matrices, possibly

with different rates of increase for the diagonal elements, leads to a regular limit matrix

either.

It is, however, possible to choose a non-diagonal matrix Kt for which a non-singular limit

matrix is obtained. In fact, for Kt � ø(t)Ö with

Ö � 1 0

1 ÿeë1

� �
and ø(t) � eÿë1 t 0

0 eÿë2 t

� �
,

the expression Kt[M] t K
T
t tends to

ç2 � (á9(1))2

U 2
1

2ë1

U1U2

ë1 � ë2

(1ÿ e(ë1ÿë2))

U1U2

ë1 � ë2

(1ÿ e(ë1ÿë2))
U 2

2

2ë2

(1ÿ e(ë1ÿë2))2

0BBB@
1CCCA,

which is non-singular with probability one. To see this, note that ç2 has the structure UËU ,

where U � diag(U1, U2) and where Ë is seen to be positive de®nite by arguments similar to

those given in the previous section.
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