
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

July 2007

A Note on Linear Time Algorithms for Maximum Error Histograms A Note on Linear Time Algorithms for Maximum Error Histograms

Sudipto Guha
University of Pennsylvania, sudipto@cis.upenn.edu

Kyuseok Shim
Seoul National University, South Korea

Follow this and additional works at: https://repository.upenn.edu/cis_papers

Recommended Citation Recommended Citation
Sudipto Guha and Kyuseok Shim, "A Note on Linear Time Algorithms for Maximum Error Histograms", .
July 2007.

Copyright 2007 IEEE. Reprinted from IEEE Transactions on Knowledge and Data Engineering, Volume 19, Issue 7,
July 2007, pages 993-997.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply
IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing
to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/341
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F341&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers/341
mailto:repository@pobox.upenn.edu

A Note on Linear Time Algorithms for Maximum Error Histograms A Note on Linear Time Algorithms for Maximum Error Histograms

Abstract Abstract
Histograms and Wavelet synopses provide useful tools in query optimization and approximate query
answering. Traditional histogram construction algorithms, e.g., V-Optimal, use error measures which are
the sums of a suitable function, e.g., square, of the error at each point. Although the best-known
algorithms for solving these problems run in quadratic time, a sequence of results have given us a linear
time approximation scheme for these algorithms. In recent years, there have been many emerging
applications where we are interested in measuring the maximum (absolute or relative) error at a point. We
show that this problem is fundamentally different from the other traditional nonl∞ error measures and
provide an optimal algorithm that runs in linear time for a small number of buckets. We also present
results which work for arbitrary weighted maximum error measures.

Keywords Keywords
histograms, algorithms

Comments Comments
Copyright 2007 IEEE. Reprinted from IEEE Transactions on Knowledge and Data Engineering, Volume 19,
Issue 7, July 2007, pages 993-997.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or
personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document,
you agree to all provisions of the copyright laws protecting it.

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/341

https://repository.upenn.edu/cis_papers/341

Concise Papers __

A Note on Linear Time Algorithms
for Maximum Error Histograms

Sudipto Guha and Kyuseok Shim

Abstract—Histograms and Wavelet synopses provide useful tools in query

optimization and approximate query answering. Traditional histogram construction

algorithms, e.g., V-Optimal, use error measures which are the sums of a suitable

function, e.g., square, of the error at each point. Although the best-known

algorithms for solving these problems run in quadratic time, a sequence of results

have given us a linear time approximation scheme for these algorithms. In recent

years, there have been many emerging applications where we are interested in

measuring the maximum (absolute or relative) error at a point. We show that this

problem is fundamentally different from the other traditional non-‘1 error

measures and provide an optimal algorithm that runs in linear time for a small

number of buckets. We also present results which work for arbitrary weighted

maximum error measures.

Index Terms—Histograms, algorithms.

Ç

1 INTRODUCTION

ONE of the central problems in database query optimization is
obtaining a fast and accurate synopsis of data distributions. Given
a query, the optimizer tries to determine the cost of various
alternative query plans based on estimates [16], [12], [13]. From the
work pioneered in [8], [9], and [14], the focus has been on serial
histograms where disjoint intervals of the domain are grouped
together and define a bucket. Each bucket is represented by a
single value. Thus, a histogram defines a piecewise constant
approximation of the data. Consider an array fxig of data values.
Given a query that asks the data value xi at i, the value (say x̂i)
corresponding to the bucket containing i is returned as an answer.
The objective of a histogram construction algorithm is to find a
histogram with at most B buckets which minimizes a suitable
function of the errors. One of the most common error measures
used in histogram construction is

P
iðxi � x̂iÞ

2 which is also known
as the V-Optimal measure.

More recently, histograms have been used in a broad range of
topics, e.g., approximate query answering [1], mining time series
data [11], and curve simplification [2], among many others. With
this diverse growth in the number of applications, there has been a
growth in the number of different error functions, other than the
sum of squares, as well. Maximum error metrics arise naturally in
the applications where we wish to represent the data with uniform
fidelity throughout the domain, instead of an average (sum)
measure. In this paper, we focus on maximum error measures and
show that these allow significantly faster optimum histogram
construction algorithms than the other (sum-based) measures.

In an early paper, Jagadish et al. [10] gave an Oðn2BÞ algorithm
for constructing the best V-Optimal histogram. This algorithm is
based on dynamic programming which generalizes to a wide

variety of error measures as well. The quadratic running time has
been undesirable for large data sets and a large number of
approximation algorithms have been introduced which have
running time linear in the size of the input at the expense of
finding a solution which is ð1þ �Þ times that of the optimal
solution (see [5], [6]). However, a natural question has remained
regarding the best running time of the optimal algorithm. It is
shown in [7] that the optimum histogram under the maximum
relative error criterion can be constructed in OðnB log2 nÞ time.

One effect of error measures such as
P

iðxi � x̂iÞ
2;
P

i jxi �
x̂ij is that all the data points are not approximated equally in
the optimum solution. While this may not be an issue for
many applications, there exists applications where we may be
interested in approximating the data at every point with high
fidelity. The authors of [3], [4] describe this property of not
approximating all points equally as the “bias” of the
approximation, and demonstrate that in several situations, this
bias is undesirable. The solutions that avoid the bias are
pointwise approximations or maximum error metrics, for
example, the maximum absolute error and maximum relative
error metrics (maxi jxi � x̂ij or maxi jxi � x̂ij=maxfc; jxijg, re-
spectively). The parameter c is a sanity bound that avoids the
influence of very small values. In this paper, we show that for
these metrics, there exists an Oðnþ B2 log3 nÞ time algorithm.
For general weighted maximum error, the running time
increases to Oðn lognþB2 log6 nÞ. We note that our techniques
extend to “hybrid” measures such as the maximum of the sum
of (or sum of squares of) errors in a bucket. However, to keep
the discussion concrete and to ease the presentation, we will
not focus on these measures.

2 PROBLEM STATEMENT

Let X ¼ x1; . . . ; xn be a finite data sequence. The general problem
of histogram construction is as follows: Given some space
constraint B, create and store a compact representation HB of the
data sequence. HB uses at most B storage and is optimal under
some notion of error. The representation collapses the values in a
sequence of consecutive points xi, where i 2 ½sr; er� (say sr � i � er)
into a single value x̂ðrÞ, thus forming a bucket br, that is,
br ¼ ðsr; er; x̂ðrÞÞ. The histogram HB is used to answer queries
about the value at point i where 1 � i � n. The histogram uses at
most B buckets which cover the entire interval ½1; n�, and saves
space by storing only OðBÞ numbers instead of OðnÞ numbers. The
histogram is mostly used to estimate the xi, and for sr � i � er, the
estimate is x̂ðrÞ. Since x̂ðrÞ is an estimate for the values in bucket br,
we suffer an error. Depending on the situation, the error may be
tempered by the importance wi we attach to each point i.

Definition 1. Given a weight vector fw1; . . . ; wi; . . . wng, s.t., each

wi � 0, the weighted maximum error for a point i 2 ½sr; er� with a

bucket br ¼ ðsr; er; x̂ðrÞÞ is defined as wijx̂ðrÞ � xij.
Definition 2 (Maximum Error Histograms). Given a set of weights

(which could all be 1), the (serial) histogram problem is to construct a

partition of the interval ½1; n� in at most B buckets such that we

minimize the maximum error.

Two notable, and well used, examples are 1) the ‘1 or the
maximum error, where wi ¼ 1 and 2) the relative maximum error
where the weights are wi ¼ 1=maxfc; jxijg and, therefore, the
relative error at the point i is jx̂ðrÞ � xij=maxfc; jxijg, where c is a
sanity constant which is used to reduce excessive domination of
relative error by small data values. Relative error metrics were

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007 993

. S. Guha is with the Department of Computer Information Sciences,
University of Pennsylvania, 3451 Walnut Street, Philadelphia, PA 19104.
E-mail: sudipto@cis.upenn.edu.

. K. Shim is with the Department of Computer Science and Electrical
Engineering, Seoul National University, Kwanak PO Box 34, Seoul 151-
742, Korea. E-mail: shim@ee.snu.ac.kr.

Manuscript received 6 May 2006; revised 25 Oct. 2006; accepted 12 Feb. 2007;
published online 21 Mar. 2007.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0236-0506.
Digital Object Identifier no. 10.1109/TKDE.2007.1039.

1041-4347/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

studied in [3], [7]. In this case, the error of a bucket br ¼ ðsr; er; x̂Þ is

defined as follows (for relative ‘1 error):

ERRMðsr; erÞ ¼ min
x̂

max
i2½sr;er �

jxi � x̂j
maxfc; jxijg

:

In the above setting, letting c be an absolute constant larger than

all numbers in the input converts the error on the previous page to

absolute ‘1 error (multiplied by 1
c) and this is the reason we can

discuss both errors at the same time. Interestingly, these two cases

are truly special, and we showcase their difference with arbitrary

weighted maximum error histograms in Section 4.

3 MAXIMUM ERROR HISTOGRAMS

In this section, we will focus on the constructing histograms that

minimize the maximum absolute error or the maximum relative

error. We will first prove a lemma about determining the error of a

fixed bucket, and subsequently use that to devise our complete

algorithm. The problem of determining maximum error is easy.

Proposition 1. Given a set of numbers x1; . . . ; x‘, the maximum error

generated by minimizing maximum errors is defined by the minimum

and the maximum over xi.

The following lemma focuses on relative error:

Lemma 1 ([7]). Given a set of numbers x1; . . . ; x‘, the maximum relative

error generated by minimizing maximum relative errors is defined by

the minimum and the maximum over these xi as described below:

Proof. Let max ¼ maxiðxiÞ and min ¼ miniðxiÞ. Suppose the

optimum representative value minimizing the maximum

relative error is x�. Notice that setting x� ¼ 0 gives a relative

error of at most 1 since jxij � maxðjxij; cÞ; thus, the error with x�

cannot be more than 1.

. Case 1 (c � min � max). The relative error function is
continuous at x� and it monotonically increases as the
value xi moves away from x� as the following formula
illustrates:

jx� � xij
maxfjxij; cg

¼ ðx� � xiÞ=xi if xi � x�
ðxi � x�Þ=xi if xi > x�:

�

Thus, we can see that the maximum relative error is

either at min or max. Let Rmin ¼ ðx� �minÞÞ=min and

Rmax ¼ ðmax� x�Þ=max. Then, in order to find the

optimal representative value, we need to compute the

value of x� satisfying Rmin ¼ Rmax. The value of x�

becomes the harmonic mean, ð2 max �minÞ=ðmaxþminÞ
and it results in the error of ðmax�minÞ=ðmaxþminÞ.

. Case 2 (min � max � c). This case is symmetric to the
above case. Thus, with similar argument, we get
min�max
maxþmin .

. Case 3 (�c � min � c � max). We split into two cases:
1) min � x� � c or 2) c � x� � max . Thus, we have

1. When min � x� � c,

jx� � xij
maxðjxij; cÞ

¼
ðx� � xiÞ=c if xi � x�
ðxi � x�Þ=c if x� � xi � c
ðxi � x�Þ=xi if c � xi:

8<
:

2. When c � x� � max ,

jx� � xij
maxðjxij; cÞ

¼
ðx� � xiÞ=c if xi � c
ðx� � xiÞ=xi if c � xi � x�
ðxi � x�Þ=xi if x� � xi:

8<
:

For both above cases, the expression of Rmin and Rmax

are the same, respectively. Thus, we can calculate x� by

solving the equation of Rmin ¼ Rmax. We get x� ¼
maxðminþcÞ

maxþc and the optimal maximum relative error

becomes ðmax�minÞ
ðmaxþcÞ .

. Case 4 (min � �c � max � c). This case is symmetric to
the above case. Thus, with similar argument, we get the
maximum relative error of max�min

c�min .
. Case 5 (�c � min � max � c). As the formula below

illustrates, the relative error function is continuous at x�

and it monotonically increases as the value xi moves
away from x�:

jx� � xij
maxðjxij; cÞ

¼ ðx� � xiÞ=c if xi � x�
ðxi � x�Þ=c if xi > x�:

�

We can calculate x� by solving the equation of

Rmin ¼ Rmax. We get x� ¼ ðmaxþminÞ
2 and the optimal

maximum relative error becomes max�min
2c .

. Case 6 (min � �c < c � max). We can see that the
relative error function becomes larger than one when x�

is nonzero, while it is one when x� is zero. Thus, we get
x� ¼ 0 and the optimal maximum relative error
becomes 1. tu

Computing Maximum and Minimum of Intervals Efficiently.

In our algorithm, we would evaluate ERRMði; jÞ for many different
intervals ½i; j�. However, it is clear that these intervals are all
related, and we should be able to create a data structure that allows
us to compute ERRMði; jÞ efficiently for all i; j. Given an interval
on ½1; n�, we construct an interval tree which is a binary tree over
subintervals of ½1; n�. The root of the tree corresponds to the entire
interval ½1; n� and the leaf nodes correspond to the intervals of
length one, e.g., ½i; i�. For the interval ½i; j� of a node in the interval
tree, we store the minimum and the maximum of xi; . . . ; xj. The
children of a node with the interval ½i; j� correspond to the two
(near) half-size intervals ½i; r� 1�, ½r; j�, where r ¼ biþjþ1

2 c. It is easy
to observe that an interval tree can be constructed in OðnÞ time and
will require OðnÞ storage. Given an arbitrary interval ½i; j�, we
partition ½i; j� into OðlognÞ intervals such that each of the resulting
subintervals belong to the interval tree. Using the decomposed
subintervals, we find the optimal maximum relative error for the
bucket. It reduces the time complexity of computing the minimum
(or maximum) to OðlognÞ.

3.1 The Algorithm

In [7], we have shown that the algorithm for computing maximum
relative error can be found in OðBn log2 nÞ time and OðBnÞ space.
In this section, we provide a better algorithm. Assume that the
B bucket optimal histogram with the maximum error measure for
the interval ½1; n� has the error of �?. For the bucket of the interval
½1; s� for an s with 1 � s � n, if s is smaller than the right boundary
of the first bucket in the optimal histogram, the error of the bucket
for ½1; s� is at most �?. However, if s is larger than the right
boundary of the first bucket in the optimal histogram, the error of

994 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007

the bucket for ½1; s� is at least �?. Assuming the errors of the

buckets ½1; s� and ½1; sþ 1� are �s and �sþ1, respectively, we are

interested in the largest s such that there does not exist a

ðB� 1Þ bucket histogram whose error is at most �s for the

interval ½sþ 1; n�, but exist a ðB� 1Þ bucket histogram whose error

is at most �sþ1 for the interval ½sþ 2; n�. In this case, the error of

the optimal histogram �? is minimum of �sþ1 and the error of the

best ðB� 1Þ bucket histogram for the interval ½sþ 2; n�. Since the

max error of the bucket for ½1; s� is monotonically increasing with s,

we can perform binary search to find the largest s satisfying the

condition. As we find the largest s, we perform the same procedure

recursively for the interval ½sþ 2; n� with ðB� 1Þ buckets.
The linear time algorithm OptHist for constructing an optimal

histogram with the max error measures is given in Fig. 1. OptHist

invokes TryThresholdð�; i; n; kÞ to check whether there exist a

k bucket histogram for the interval ½i; n�, where the max error is at

most �. TryThresholdð�; i; n; kÞ finds the largest value low using a

binary search such that the error of the bucket ½i; low� is at most �

and the error of the histogram of the interval ½lowþ 1; n� using

ðk� 1Þ buckets is larger than �. After we find the largest low, we

call TryThresholdð�; lowþ 1; n; k� 1Þ recursively and return its

result.

Lemma 2. If there is a way of partitioning the interval ½i; n� into

k intervals such that the maximum error is no more than �,

TryThresholdð�; i; n; kÞ returns true.

Proof. The procedure finds the largest value low such that the error

of the bucket ½i; low� is at most �. Thus, if there is a way of

partitioning ½i; n� into k buckets such that the maximum error is

no more than �, then if the first bucket of this (unknown)

solution is ½i; z� then z � low. Therefore, there exists a way of

partitioning ½lowþ 1; n� into ðk� 1Þ buckets such that the

maximum error is at most �. This partitioning can be derived

by erasing all the buckets that end before low in the k-bucket

solution for ½i; n�. Now, we have a recursive condition set up,

which is checked when k ¼ 1. tu
Lemma 3. Procedure OptHistði; n; kÞ returns the best possible error

from partitioning ½i; n� into k buckets.

Proof. We will prove the lemma by induction. The statement is

clearly true for k ¼ 1.
If k > 1, the procedure computes low to be the smallest j

such that ERRMði; jÞ ¼ � and there is a solution of error � for
½jþ 1; n� using ðk� 1Þ buckets. This already means that there is
a solution of error � for OptHistði; n; kÞ. If low ¼ i, we actually
have � ¼ 0 and that is the best possible answer.

If low > i, we also know that there does not exist a solution
of covering ½i; n� using k buckets with error ERRMði; low� 1Þ

(otherwise, we would have chosen a lower value of low). Thus,
if the optimum error for covering ½i; n� with k buckets is z?, then

ERRMði; low� 1Þ < z? � �:

Notice that under no condition will we return a solution
greater than �. Thus, if z? ¼ �, we have nothing to prove.

Suppose the optimum solution is strictly less than �. Then,
the first bucket in the optimum solution must be some ½i; i0�,
where i0 < low. But, if we (possibly) increase the first bucket to
½i; low� 1�, then the error of the first bucket is still less than z?,
and this cannot increase the error of the remaining buckets of
the optimal solution. Thus, there must be a solution of error z?

for covering ½low; n� by ðk� 1Þ buckets. By inductive hypothesis,
we would compute the correct answer in OptHistðlow; n; k� 1Þ
and since z? < �, we have computed the correct answer. tu

The running time of the procedure TryThreshold can be

expressed by the simple recurrence

gðkÞ ¼ log2 nþ gðk� 1Þ:

The first log term comes from binary search and the second log

term comes from the time taken to evaluate ERRMðÞ using an

interval tree. Obviously, gð0Þ ¼ 0. Thus, gðkÞ ¼ ck log2 n for some

constant c.
The running time of OptHist is therefore given by the following

recurrence:

fðkÞ ¼ gðkÞ lognþ fðk� 1Þ:

The log term appears from the binary search. Thus, fðkÞ ¼ ck2 log3 n.

To this, we must add the preprocessing time to create the interval

tree, which is OðnÞ. Therefore, we can summarize the following:

Theorem 1. We can compute the optimum histogram under maximum or

maximum relative error in OðnþB2 log3 nÞ time and OðnÞ space.

4 EXTENSIONS: WEIGHTED MAXIMUM ERRORS

Let us revisit the general problem of minimizing arbitrary

weighted errors fwig. The most basic problem is already

interesting: Given numbers xi; . . . ; xj, and corresponding nonne-

gative weights wi; . . . ; wj, compute the x� that minimizes

minx maxi�r�j wrjx� xrj. This corresponds to the representation

problem of a single bucket. The best way to view the solution is to

focus on Fig. 2a where the three points define cones where the slope

of the point corresponding to xr is the corresponding wr. This cone

depicts how the function wrjx� xrj behaves as x is varied.
The x� corresponds to the lowest point in the intersection of all

these cones. To compute the x�, observe that the intersection of

cones is a convex region (because each cone is a convex region).

Definition 3. Define the boundary of the intersection of the cones to be

the “profile” for the set of numbers xi; . . . ; xj. The profile is a convex

chain of line segments (stored in sorted order); the number of segments

is at most 2jj� ij þ 2. The minimum error and x� can be computed

from the profile using binary search.

Now, we can divide the point set into two (arbitrary) halves and

compute the boundary of each of the convex regions and compute

the intersection of these two convex regions, similar to the

MergeHull algorithm [15]. Fig. 2b illustrates the process, It is

straightforward to see that if we maintain each of the boundaries as

convex chains, we can perform a “walk” from left to right and

compute the boundary of the intersection. However, that would

mean that each merge step (over all recursive divisions) takes as

much time as there are lines, and the number of lines is as most

twice the number of original points. This gives a divide and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007 995

Fig. 1. The OptHistERRM algorithm.

conquer algorithm to compute the x�, in time Oðm logmÞ, where

m ¼ jj� ij. This is clearly not desirable, because then the time to

evaluate the error of a bucket may be Oðn lognÞ and, thus, we

would have a Oðnþ B2n log3 nÞ ¼ OðB2n log3 nÞ algorithm along

the lines of Theorem 1. However, we now use the same principle as

in Section 3 to speed up the computation. We prove a basic fact first.

Claim 1. Suppose we seek to minimize a convex function fðxÞ. If we

observe fðxÞ at the set of distinct values a1 < a2 < . . . < ak, and

fðaiÞ achieves the minimum, then arg minx fðxÞ 2 ½ai�1; aiþ1�.
Proof. Suppose otherwise; let x� be the value that achieves the

minimum and this value is less than that of fðaiÞ. If x� < ai�1,

then we have x� < ai�1 < ai and fðx�Þ < fðaiÞ � fðai�1Þ; which

implies that the function is not convex (it increases and then
stays the same or decreases which is not possible for a convex

function). Thus, x� < ai�1 implies that fðx�Þ ¼ fðaiÞ. If x� > aiþ1,

then we have ai < aiþ1 < x� and fðx�Þ < fðaiÞ � fðaiþ1Þ; this
also implies that the function remains the same (or increases)

and then decreases which is not allowed for convex functions.tu
The next lemma captures the fact that we can share the

computation of the maximum error across different intervals.

Lemma 4. For all weighted maximum errors, we can precompute a

data structure in Oðn lognÞ space and time, such that subsequently

on any interval ½i; j� of interest we can compute the minimum error

(and the x) achieved in representing xi; . . . ; xj using a single value

x, in time Oðlog4 nÞ.
Proof. Once again, we construct an interval tree over ½1; n� by

recursive halving. For each half, we compute and store the

profile. The size of the profile is at most twice the number of

points—therefore, over all the OðlognÞ recursive levels, the

space used is Oðn lognÞ.
Given an arbitrary interval ½i; j�, we partition ½i; j� into

OðlognÞ intervals such that each of the resulting subintervals
belong to the interval tree. Now, we have OðlognÞ profiles and
we have to compute the minimum point in their intersection.
Computing the intersection explicitly requires too much
time—we will use the prune and search technique.

Specifically, we will proceed in a round robin fashion over
the profiles. Suppose we have picked the first profile: If this
profile has over eight line segments, we will divide this profile
into four partitions such that each partition has almost the same
number of line segments. This can be done easily because we
store the profiles as sorted arrays. The boundaries of these four
pieces would define five points a1, a2, a3, a4, and a5. We will
evaluate maxi wijx� xij for these five values of x using all the
profiles; note that for a particular profile and particular aj, this
involves a OðlognÞ binary search, because we have to determine
the intersection of the x ¼ aj vertical line with the profile. This
means we would use Oð5 lognÞ ¼ OðlognÞ time per profile to
estimate the intersection and, therefore, Oðlog2 nÞ time over the
OðlognÞ profiles. At this point, we can use Claim 1, and at most
2=3 of the segments are of interest.1 The result of this
computation is declared as a phase—Fig. 3 shows the
computation over a phase.

This means, after OðlognÞ such phases (and Oðlog3 nÞ time),
we would have reduced the first profile to less than eight
segments. We would now proceed to the second profile, and so
on. Note that we always maintain a region containing x�.

When we finish the above process after Oðlog4 nÞ time, each

profile would have eight line segments each and we can

compute the solution over these Oð8 lognÞ remaining segments

in Oðlog2 nÞ time easily. tu
Note that the algorithm can be analyzed better using amortiza-

tion and/or randomization. As we reduced the first profile, we
could also be shrinking the other profiles—we did not consider
that. Using randomization, the time can be made Oðlog3 nÞ, we
need to repeatedly pick a profile with a probability proportional to
the number of remaining segments of interest. After the division,
this would reduce the total number of segments of interest across
all profiles by a factor of 2=3. At this point, we again probabil-
istically choose the profile to be reduced. However, the proof
would require verifying that this event happened with high
probability—and we omit the discussion in the interest of space
and simplicity. Note that even in the weighted case, the error of a

996 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007

Fig. 3. The algorithm for computing the error of ½i; j� in pictures. (a) Shows the division of the first profile into nearly four equal size sets, and define a1, a2, a3, a4, and a5.

(b) Shows the overall minimum in the intersection of convex regions, the circled point is the optimum. (c) Shows circles at the result of evaluating maxi wijx� xij at these

values. (d) Shows the information available to the algorithm and how the recursion proceeds.

Fig. 2. (a) The shaded region indicates the convex region and the lowest point is the desired x. (b) Shows how to compute the intersection of these convex regions,

provided they are maintained in a sorted order, in a manner similar to mergesort.

1. Due to odd/even issues in the partitioning, we may have two extra
lines which increase the fraction from 1=2.

bucket ½i; j� does not decrease as j increases. This was the key
property used in the proof of Theorem 1. Combining that proof
with Lemma 4, we get the following:

Theorem 2. We can compute the optimum histogram under arbitrarily
weighted maximum error in Oðn lognþ B2 log6 nÞ time and
Oðn lognÞ space.

It is interesting to observe why the maximum and maximum
relative error measures are special—if for these weights we draw
the cones, then the cones all merge at the same point. For
maximum error, the point is at1 because the sides of the cones are
parallel, this is shown in Fig. 4a. For the maximum relative error,
the cones (in the absence of the sanity constant c) intersect at the
point ð0; 1Þ, which implies that the relative error is 1 if we
approximate every (large) value by 0. The constant c makes the
situation a bit more complicated, see Fig. 4b, the region ½�c; c�
distorts the cones into possibly nonconvex shapes. This is why we
had to explicitly analyze these regions separately in Lemma 1. But,
in both of these examples, the cone in the middle is again
dominated by the two adjacent cones. This shows that only the
maximum and the minimum values matter for these error
measures and why these measures are similar.

5 SUMMARY

Histograms and Wavelet synopsis provide useful tools in query
optimization and approximate query answering. The previous
algorithm for constructing an optimal histogram with the
maximum error criterion takes OðBn log2 nÞ time and OðBnÞ space.
In this paper, we presented a linear time optimal algorithm for the
maximum error and maximum relative error measures (when B is
small, i.e., B ¼ oð ffiffiffinp =log2nÞ). We extended the algorithm to
arbitrary weights increasing the space and time bounds by small
(log2 n) factors.

ACKNOWLEDGMENTS

S. Guha’s research is supported in part by an Alfred P. Sloan
Research Fellowship and by a US National Science Foundation
Award CCF-0430376. K. Shim’s research is supported by the
Ministry of Information and Communication, Korea, under the
College Information Technology Research Center Support Pro-
gram, grant number IITA-2006-C1090-0603-0031.

REFERENCES

[1] S. Acharya, P. Gibbons, V. Poosala, and S. Ramaswamy, “The Aqua
Approximate Query Answering System,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 574-576, 1999.

[2] M. Bertolotto and M.J. Egenhofer, “Progressive Vector Transmission,” Proc.
Seventh ACM Symp. Advances in Geographical Information Systems, pp. 152-
157, 1999.

[3] M.N. Garofalakis and P.B. Gibbons, “Wavelet Synopses with Error
Guarantees,” Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 476-
487, 2002.

[4] M.N. Garofalakis and A. Kumar, “Deterministic Wavelet Thresholding for
Maximum-Error Metrics,” Proc. 23rd ACM SIGMOD-SIGACT-SIGART
Symp. Principles of Database Systems, pp. 166-176, 2004.

[5] S. Guha, N. Koudas, and K. Shim, “Data Streams and Histograms,” Proc.
33rd Ann. ACM Symp. Theory of Computing, pp. 471-475, 2001.

[6] S. Guha, N. Koudas, and K. Shim, “Approximation and Streaming
Algorithms for Histogram Construction Problems,” ACM Trans. Database
Systems, vol. 31, no. 1, 2006.

[7] S. Guha, K. Shim, and J. Woo, “REHIST: Relative Error Histogram
Construction Algorithms,” Proc. Very Large Data Bases Conf., pp. 300-311,
2004.

[8] Y.E. Ioannidis, “Universality of Serial Histograms,” Proc. Very Large Data
Bases Conf., pp. 256-267, 1993.

[9] Y. Ioannidis and V. Poosala, “Balancing Histogram Optimality and
Practicality for Query Result Size Estimation,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 233-244, 1995.

[10] H.V Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K.C. Sevcik, and
T. Suel, “Optimal Histograms with Quality Guarantees,” Proc. Very Large
Data Bases Conf., pp. 275-286, 1998.

[11] E. Keogh, K. Chakrabati, S. Mehrotra, and M. Pazzani, “Locally Adaptive
Dimensionality Reduction for Indexing Large Time Series Databases,”
ACM Trans. Database Systems, vol. 27, no. 2, pp. 188-228, 2002.

[12] R. Kooi, “The Optimization of Queries in Relational Databases,” PhD thesis,
Case Western Reserve Univ., 1980.

[13] M. Muralikrishna and D.J. DeWitt, “Equi-Depth Histograms for Estimating
Selectivity Factors for Multidimensional Queries,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 28-36, 1988.

[14] V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita, “Improved Histograms for
Selectivity Estimation of Range Predicates,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 294-305, 1996.

[15] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction.
Springer-Verlag, 1985.

[16] P.G. Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price,
“Access Path Selection in a Relational Database Management System,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, pp. 23-34, 1979.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 19, NO. 7, JULY 2007 997

Fig. 4. The cone in the middle is dominated by the adjacent cones. (a) Cones for

‘1. (b) Cones for relative maximum error.

	A Note on Linear Time Algorithms for Maximum Error Histograms
	Recommended Citation

	A Note on Linear Time Algorithms for Maximum Error Histograms
	Abstract
	Keywords
	Comments

	untitled

