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Let R be a commutative ring and S a finite locally inverse semigroup. It is proved that the semi-
group algebra R[S] is isomorphic to the direct product of Munn algebras M (R[GJ], mJ , nJ ;PJ)
with J ∈ S/J, where mJ is the number of R-classes in J , nJ the number of L-classes in J , and GJ a
maximum subgroup of J . As applications, we obtain the sufficient and necessary conditions for the
semigroup algebra of a finite locally inverse semigroup to be semisimple.

Copyright q 2008 Xiaojiang Guo. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Main results

A regular semigroup S is called a locally inverse semigroup if for all idempotent e ∈ S, the lo-

cal submonoid eSe is an inverse semigroup under the multiplication of S. Inverse semigroups

are locally inverse semigroups. Inverse semigroup algebras are a class of semigroup algebras

which is widely investigated. One of fundamentally important results is that a finite inverse

semigroup algebra is the direct product of full matrix algebras over group algebras of the maxi-

mum subgroups of this finite inverse semigroup. Consider that all local submonoids of a locally

inverse semigroup are inverse semigroups, it is a very natural problem whether a finite locally

inverse semigroup algebra has a similar representation to inverse semigroup algebras. This is

the main topic of this note.

LetA be an R-algebra. Letm and n be positive integers, and let P be a fixed n×mmatrix

over A. Let M := M(A;m,n;P) be the vector space of all m × n matrices over A. Define a

product ◦ in M by

A ◦ B = APB (A,B ∈ M), (1.1)

whereAPB is the usual matrix product ofA, P , and B. ThenM is an algebra over R. Following

[1], we call M the Munnm × n matrix algebra over A with sandwich matrix P .
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By a semisimple semigroup, we mean a semigroup each of whose principal factor is ei-

ther a completely 0-simple semigroup or a completely simple semigroup. It is well known

that a finite regular semigroup is semisimple. The Rees theorem tells us that any completely

0-simple semigroup (completely simple semigroup) is isomorphic to some Rees matrix semi-

group M0(G, I,Λ;P) (M(G, I,Λ;P)), and vice versa (for Rees matrix semigroups, refer to [1]).

In what follows, by the phrase “Let S =
⋃

J∈S/JM
0(GJ ; IJ ,ΛJ ;PJ) be a finite regular semi-

group,” we mean that S is a finite regular semigroup in which the principal factor of S de-

termined by the J-class J is isomorphic to the Rees matrix semigroup M0(GJ ; IJ ,ΛJ ;PJ) or

M(GJ ; IJ ,ΛJ ;PJ) for any J ∈ S/J.

The following is the main result of this paper.

Theorem 1.1. Let S =
⋃

J∈S/JM
0(GJ , IJ ,ΛJ ;PJ) be a finite locally inverse semigroup. Then the semi-

group algebra R[S] is isomorphic to the direct product ofM(R[GJ]; |IJ |, |ΛJ |;PJ) with J ∈ S/J.

Based on Theorem 1.1 and [1, Lemma 5.17, page 162, and Lemma 5.18, page 163], the

following corollary is straightforward.

Corollary 1.2. Let S =
⋃

J∈S/JM
0(GJ , IJ ,ΛJ ;PJ) be a finite locally inverse semigroup. Then the semi-

group algebra R[S] has an identity if and only if |IJ | = |ΛJ | and PJ is invertible in the full matrix

algebraM|IJ |(R[GJ]) for all J ∈ S/J.

Reference [1, Lemma 5.18, page 163] told us that M(R[GJ], mJ , nJ ;PJ) is isomorphic to

the full matrix algebra MnJ
(R[GJ]) if M(R[GJ], mJ , nJ ;PJ) has an identity. Now, we have the

following.

Corollary 1.3. Let S =
⋃

J∈S/JM
0(GJ , IJ ,ΛJ ;PJ) be a finite locally inverse semigroup. If R[S] has

an identity, then R[S] is isomorphic to the direct product of the full matrix algebrasM|IJ |(R[GJ]) with

J ∈ S/J.

The following corollary is a consequence of Corollary 1.3.

Corollary 1.4. Let S =
⋃

J∈S/JM
0(GJ , IJ ,ΛJ ;PJ) be a finite locally inverse semigroup. Then the semi-

group algebra R[S] is semisimple if and only if for all J ∈ S/J,

(1) |IJ | = |ΛJ |;

(2) PJ is invertible in the full matrix algebraM|IJ |(R[GJ]);

(3) R[GJ] is semisimple.

2. Proof of Theorem 1.1

For our purpose, we have the Möbius inversion theorem [2].

Lemma 2.1. Let (P,≤ ) be a locally finite partially ordered set (i.e., intervals are finite) in which each

principal ideal has a maximum and G be an Abelian group. Suppose that f : P → G is a function

and define g : P → G by g(x) =
∑

y≤xf(y). Then f(x) =
∑

y≤xg(y)µ(x, y), where µ is a Möbius

function.

Now assume that S is a regular semigroup and a, b ∈ S. Define

a ≤ b ⇐⇒ there exist e, f ∈ E(S) such that a = eb = bf. (2.1)
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Then ≤ is a partial order on S. Following [3], we call ≤ the natural partial order on S. Equiv-

alently, a ≤ b if and only if for every (for some) f ∈ E(Rb) (f ∈ E(Lb)), there exists e ∈

E(Ra) (e ∈ E(La)) such that e ≤ f and a = eb (a = be). Moreover, Nambooripad [3, 4] proved

that S is a locally inverse semigroup if and only if the natural partial order ≤ is compatible

with respect to the multiplication of S.

Lemma 2.2. Let S be a locally inverse semigroup and a, b ∈ S. Then for any u ≤ ab, there exist x ≤ a

and y ≤ b such that u = xy, x ∈ Ru and y ∈ Lu.

Proof. For any e ∈ E(Ra), we have ea = a and eab = ab. Let z be an inverse of ab. Clearly,

abz ∈ E(Rab). Note that eabz = abz. It is easy to check that abze ∈ E(S), abze ≤ e, and

abzRabze. Hence abzeRab and there exists g ∈ E(S) such that u = gab and g ≤ abze (≤ e).

Thus ga ≤ a. On the other hand, since R is a left congruence and since abzeRab, we have

u = gabRgabze = g; while since aRe, we have gaRge = g. These imply that uRga. Dually, we

have h ∈ E(S) such that u = abh, bh ≤ b and uLbh. Since u = gab = abh = uh = (ga) (bh), we

know that ga and bh are the required elements x and y.

Define a multiplication ⊗ on S0 = S ∪ {0} by

x ⊗ y =

{

xy if x /= 0, y /= 0, and y, xy ∈ Jx;

0 otherwise,
(2.2)

where xy is the product of x and y in S. By the arguments of [4, page 9], (S0,⊗) is a semigroup.

We denote by S⊗ the semigroup (S0,⊗). For any J ∈ S/J, we denote J0 = J ∪ {0}. It is easy

to check that (J0,⊗) is a subsemigroup of S⊗, which is isomorphic to the principal factor of S

determined by J . We will denote the semigroup (J0,⊗) by J⊗. By the definition of ⊗, it is easy

to see that in the semigroup S⊗,

(i) J⊗x ⊗ J⊗x ⊆ J⊗x for all x ∈ S;

(ii) J⊗x ⊗ J⊗y = 0 for all x, y ∈ S such that x /∈ Jy.

Thus R0[S
⊗] is the direct sum of the contracted semigroup algebras R0[J

⊗] with J ∈ S/J.

Note that J⊗ is isomorphic to some principal factor of S. We observe that J⊗ is a completely 0-

simple semigroup since S is a semisimple semigroup, and thus J⊗ is isomorphic to some Rees

matrix semigroup M0(GJ , IJ ,ΛJ ;PJ). By a result of [1], R0[M
0(GJ , IJ ,ΛJ ;PJ)] is isomorphic to

M(R[GJ], |IJ |, |ΛJ |;PJ). Consequently, to verify Theorem 1.1, we need only to prove that R[S]

is isomorphic to R0[S
⊗].

For the convenience of description, we introduce the semigroup S. Put S = {x | x ∈

S} ∪ {0}. Define a multiplication on S as follows:

x∗y = x ⊗ y, (2.3)

where wewill identify 0 with 0. It is easy to see that S is isomorphic to S⊗. Hence the contracted

semigroup algebra R0[S] is isomorphic to the contracted semigroup algebra R0[S
⊗]. For J ∈

S/J, we denote J = {x | x ∈ J} ∪ {0}. It is easy to check that (J, ∗) is a subsemigroup of S

isomorphic to the semigroup J⊗. So, for any J,K ∈ S/J, we have

J∗K

{

⊆ J if K = J,

= 0 otherwise.
(2.4)
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For Theorem 1.1, it remains to prove the following lemma.

Lemma 2.3. R[S] ∼= R0[S].

Proof. We consider the mapping ϕ : R[S] → R0[S] given on the basis by ϕ(s) =
∑

t≤st (s ∈ S).

Clearly, ϕ is well defined. Of course, ϕ and • may be regarded as the mappings of the ordered

set (S,≤ ) into the additive group of R0[S]. Now, by applying the Möbius inversion theorem to

the mappings ϕ and •, we have

s =
∑

t≤s

ϕ(t)µ(t, s) = ϕ

(

∑

t≤s

tµ(t, s)

)

, (2.5)

where µ is the Möbius function for (S,≤ ). Hence ϕ is surjective.

We will prove that ϕ is injective. For α0 =
∑

x∈Sp
0
xx ∈ R[S], we denote by supp (α0)

the set {x ∈ S | p0x /= 0} and by M(α0) the set of maximal elements in the set supp(α0)

with respect to the partial order ≤. In recurrence, we define αn = αn−1 −
∑

x∈M(αn−1)
pn−1x x,

where αn =
∑

x∈supp(αn)
pnxx. Let βn =

∑

x∈supp(βn)
qnxx with n = 0, 1, 2, . . . . If ϕ(αn) = ϕ(βn),

then by the definition of ϕ,
∑

x∈M(αn)
pxx + Γαn

= ϕ(αn) = ϕ(βn) =
∑

y∈M(βn)
qnyy + Γβn , where

Γαn
=

∑

x∈M(αn)

∑

y∈S,y<xp
n
yy and Γβn =

∑

x∈M(βn)

∑

y∈S,y<xq
n
yy, and hence

∑

x∈M(αn)
pnxx =

∑

x∈M(βn)
qnxx, thus M(αn) = M(βn) and pnx = qnx for any x ∈ M(αn). This can imply the fol-

lowing.

Fact 2.4. If ϕ(αn) = ϕ(βn), thenM(αn) = M(βn) and by the definition of ϕ, ϕ(αn+1) = ϕ(βn+1).

By the definition of ϕ, the following facts are immediate.

Fact 2.5. αn = βn if and only if M(αn) = M(βn) and αn+1 = βn+1.

Fact 2.6. If ϕ(αn) = ϕ(βn) andM(αn) = supp(αn),M(βn) = supp(βn), then αn = βn.

Note that |supp(α0)| < ∞ and supp(αn+1) ⊆ supp(αn). We thus have a smallest integer

k such that M(αk) = supp(αk). Clearly, αk+1 = 0. This means that k is the smallest integer t

such that αt+1 = 0. Similarly, there exists the smallest integer l such that βl+1 = 0 and M(βl) =

supp(βl). Now, assume ϕ(α0) = ϕ(β0). By using Fact 2.4 repeatedly,

ϕ
(

α1

)

= ϕ
(

β1
)

, ϕ
(

α2

)

= ϕ
(

β2
)

, . . . , ϕ
(

αk+1

)

= ϕ
(

βk+1
)

. (2.6)

But ϕ(αk+1) = 0, we have ϕ(βk+1) = 0 and by the definition of ϕ, βk+1 = 0. Thus k + 1 ≥ l + 1

by the minimality of l, and k ≥ l. Similarly, l ≥ k. Therefore k = l. Since ϕ(αk) = ϕ(βk), by

Fact 2.6, we have αk = βk sinceM(αk) = supp(αk) andM(βl) = supp(βl). Again by the hypoth-

esis ϕ(α0) = ϕ(β0), and by Fact 2.4, M(α0) = M(β0); and by (2.6), M(α1) = M(β1), M(α2) =

M(β2), . . . ,M(αk) = M(βk). By Fact 2.5, M(αk−1) = M(βk−1); and αk = βk imply αk−1 = βk−1;

moreover, by using Fact 2.5 repeatedly, αk−2 = βk−2, . . . , α1 = β1 and α0 = β0. We have now

proved that ϕ is injective.

Finally, for any s, t ∈ S, by (2.4), we have

s∗t =

{

st if s, t ∈ Jst,

0 otherwise,
(2.7)
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and by Lemma 2.2,

ϕ(s)∗ϕ(t) =

(

∑

x≤s

x

)

∗

(

∑

y≤t

y

)

=
∑

x∈Jst,x≤s

∑

y∈Jst,y≤t

x∗y

=
∑

x∈Jst,x≤s

∑

y∈Jst,y≤t

xy.

(2.8)

Moreover, by Lemma 2.2, we have

ϕ(st) =
∑

u≤st

u =
∑

x∈Jst,x≤s

∑

y∈Jst,y≤t

xy

=
∑

x≤s,x∈Jst

∑

y≤t,y∈Jst

x∗y = ϕ(s)∗ϕ(t).
(2.9)

Thus ϕ is a homomorphism of R[S] into R0[S]. Consequently, ϕ is an isomorphism of R[S]

onto R0[S].
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