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Abstract. In this note, we present a connection between designing low
correlation zone (LCZ) sequences and the results of correlation of se-
quences with subfield decompositions presented in a recent book by the
first two authors [2]. This results in low correlation zone signal sets with
huge sizes over three different alphabetic sets: finite field of size q, in-
teger residue ring modulo q, and the subset in the complex field which
consists of powers of a primitive q-th root of unity. We also provide two
open problems along this direction.

Index Terms: low correlation zone sequences, subfield reducible se-
quences, two-tuple balance property.

1 Introduction

Recently, there have been some interesting developments involving quasi-synchronous

(QS) CDMA communication systems and on the design of sequences with low

correlation zone (LCZ) that can be used in such systems [1][8][9][5].

This paper will describe a general approach to the design of LCZ sequences

using the results on sequences with subfield decompositions, presented in Chap-

ter 8 of [2] by the first two authors [2]. The above known cited results on LCZ

sequences can be obtained easily from this general setting.

1.1 Notation

We use the following notation throughout the paper.
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- The finite field GF (qn) is denoted by Fqn for any positive integer n and

q = pt, a power of a prime, and the multiplicative group of Fqn is denoted

by F∗qn .

- The trace function from Fqn to Fqm where m is a factor of n, i.e., m|n, is

denoted by Trn
m(x) = x + xQ + · · · + xQl−1

where Q = qm and n = lm. If

the context is clear, we drop the subscript and superscript of Trn
1 (x), i.e.,

we write Trn
1 (x) as Tr(x) for simplicity.

- α always denotes a primitive element of Fqn .

- Let {ai} be a sequence over Fq of period qn− 1. Using the (discrete) Fourier

transform, there exists a function f(x) from Fqn to Fq such that ai =

f(αi), i = 0, 1, · · ·, which can be written as a sum of monomial trace terms.

We say that f(x) is a trace representation of a associated with α, or a is an

evaluation of f(x) (for details, see [2]). For any function f(x) appearing in

this paper, we assume that f(0) = 0 if there is no other specification. For

each function f(x) from Fqn to Fq, there is a boolean representation in n vari-

ables for f(x), denoted by f(x) = f(x1, · · · , xn) where x = (x1, · · · , xn) ∈ Fn
q .

Since Fqn is isomorphic to Fn
q , we identify the elements of Fqn as vectors in

Fn
q if this is useful. We also use the terms a function from Fqn to Fq and

a boolean function in n variables over Fq (i.e., a function from Fn
q to Fq)

interchangeably.

– Let {αi} be a self-dual basis of Fqn . Let x = x1α1+ · · ·+xnαn ∈ Fqn , xi ∈ Fq

and y = y1α1 + · · · + ynαn ∈ Fqn , yi ∈ Fq. Then x · y = Trn
1 (xy) where

x = (x1, · · · , xn) and y = (y1, · · · , yn) and x · y =
∑n

i xiyi, the dot product

of x and y.

1.2 Three Types of Crosscorrelations

Let N = qn − 1 and a = {ai} and b = {bi} be two sequences over Fq of period

qn − 1 where q = pt where p is a prime. When t > 1 there seems to be no single

(universally accepted or applicable) consensus on the correlation between a and

b. At least three different notions have been proposed [2], and we will use the

following (see Question 16 in Exercises for Chapter 5 in [2]):

Let η be a primitive qth root of unity, i.e., there is some integer j such that

η = exp( j2π
q ) with gcd(j, q) = 1. Let {α0, α1, · · · , αt−1} be a basis of Fq over Fp.
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For x ∈ Fq, we have

x =
t−1∑

i=0

xiαi, xi ∈ Fp. (1)

We define

ρ(x) =
t−1∑

i=0

xip
i, xi ∈ Fp. (2)

Then ρ shows a one-to-one correspondence between the finite field Fq and the

integer residue ring Zq. If q = p, then ρ(x) = x. The crosscorrelation between a

and b is defined as

Ca,b(τ) =





∑N−1
i=0 ηai+τ−bi , q = p, τ = 0, 1, · · ·

∑N−1
i=0 ηρ(ai+τ )−ρ(bi), q = pt, t > 1, τ = 0, 1, · · · .

(3)

In other words, the elements of Fpt are represented by the p-adic numbers in Zq

as stated in [2].

From this definition, when q = pt for t > 1, we essentially obtain correlation

of sequences whose elements are taken from three different alphabets.

(1) The crosscorrelation between a = {ai} and b = {bi}, where ai, bi ∈ Fq,

i.e., the elements of the sequences a and b are taken from the finite field Fq with

q elements.

(2) Let

ui = ρ(ai) ∈ Zq, and vi = ρ(bi) ∈ Zq, 0, 1, · · · . (4)

Through the definition of the crosscorrelation of a and b, we obtain a crosscor-

relation of u = {ui} and v = {vi} which are integer sequences over Zq. In other

words, the crosscorrelation between u and v is given by

Cu,v(τ) =
N−1∑

i=0

ηui+τ−vi , τ = 0, 1, · · · . (5)

(3) Let s = {si} and t = {ti} whose elements are defined as

si = ηui = ηρ(ai) and ti = ηvi = ηρ(bi), i = 0, 1, · · · , . (6)

Thus s and t are sequences over the complex q-th roots of unity, i.e., in the

complex field C. The crosscorrelation between s and t is defined as

Cs,t(τ) =
N−1∑

i=0

si+τ t∗i , τ = 0, 1, · · · , (7)
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where x∗ means the conjugate of the complex number x.

The crosscorrelations of these three types of sequences are equal, i.e., we have

Ca,b(τ) = Cu,v(τ) = Cs,t(τ), τ = 0, 1, · · · . (8)

Thus, if we derive the crosscorrelation between sequences over Fq, then at

the same time we obtain the crosscorrelation between sequences over Zq and the

crosscorrelation between sequences over the complex field, defined by (4) and

(6), respectively. Therefore, all the results on correlation derived in this paper

for sequences over Fq are valid for the other two classes of sequences.

In the rest of the paper, for simplicity, we will omit the map ρ in correlation

calculation, but it should understand that if q = pt, t > 1, x in ηx, x ∈ Fq

represents the p-adic representation of x, i.e., ρ(x) defined by (2).

We may write the correlation function Ca,b(τ) in terms of exponential sums

as follows, which can simplify proofs for correlation calculations in many cases.

Ca,b(τ) + 1 =





∑
x∈Fqn

ηa(λx)−b(x), q = p

∑
x∈Fqn

ηρ(a(λx))−ρ(b(x)), q = pt, t > 1
(9)

where λ = ατ ∈ F∗qn , a(x) and b(x) are the trace representations of a and b

respectively. (Note. Both a(x) and b(x) are functions from Fqn to Fq.) The equa-

tion (9), in fact, is the definition of the crosscorrelation between two functions

a(x) and b(x) [2]. In other words, the crosscorrelation between a(x) and b(x),

denoted by Ca,b(λ), is defined as

Ca,b(λ) =





∑
x∈Fqn

ηa(λx)−b(x), q = p

∑
x∈Fqn

ηρ(a(λx))−ρ(b(x)), q = pt, t > 1.
(10)

Thus, the relationship of the correlation between the sequences a and b to the

correlation between the functions a(x) and b(x) is given by

Ca,b(τ) + 1 = Ca,b(λ), λ = ατ ∈ F∗qn . (11)

We will use the correlation of the function version for derivations in the rest of

this paper.
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1.3 LCZ and Almost LCZ Sequences

We now review the concept of sequences with low correlation zone (LCZ) and

define “almost” LCZ sequences. Let sj = (sj,0, sj,1, · · · , sj,N−1), 0 ≤ j < r, be r

shift-distinct sequences over Fq with period N . Let S = {s0, s1, · · · , sr−1}. If for

any two sequences in S, say a and b, Ca,b(τ), the correlation function between

a and b defined by (3), satisfies |Ca,b(τ)| ≤ δ, then S is said to be an (N, r, δ)

signal set, and δ is referred to as the maximum correlation of S. If we put a

condition on the range of τ , i.e., for a fixed nonnegative number d, if for any two

sequences a and b in S, we have

|Ca,b(τ)| ≤ δ, ∀ |τ | < d (12)

then S is referred to as an (N, r, δ, d) low correlation zone (LCZ) signal set.

Note that in communication practice, especially in the uplink of QS-CDMA

systems, any received signal most likely has a phase shift, thus, the value of the

crosscorrelation at τ = 0 may not have significant effect during the detection

process. Thus if the crosscorrelation of any two sequences in S satisfies the

following conditions:

|Ca,b(τ)| ≤ δ, ∀ 0 < |τ | < d (13)

we call S an (N, r, δ, d) almost low correlation zone (ALCZ) signal set.

According to this definition, if d = dN/2e, then a (N, r, δ, d) LCZ signal set

becomes a (N, r, δ) signal set. Recently, there have been several constructions of

LCZ signal sets with parameters (N, r, 1, d) where d = qn−1
qm−1 , where m|n, and

the values of r depend on m [8][9][5].

It is quite interesting to observe that all such LCZ signal sets come from a

well-known fact which is presented in [2]. In the following section, we present

this relation. In Section III, we give two open problems and some concluding

remarks.

2 Crosscorrelation of Subfield Reducible Sequences

A function f(x) from Fqn to Fq is said to be balanced if each element in Fq occurs

in {f(x) |x ∈ Fqn} exactly qn−1 times. We set Q = qm, n = lm, and d = qn−1
qm−1 .
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Definition 1. Let f(x) be a function from Fqn to Fq with f(0) = 0 and let

Tf (λ) = {(f(x), f(λx)) |x ∈ Fqn}, λ ∈ Fqn . (14)

We say that f(x) satisfies the two-tuple balance property if f(x) satisfies the

following two conditions:

1. For λ /∈ FQ each pair (θ, µ) ∈ F2
Q occurs Ql−2 times in Tf (λ).

2. For λ ∈ F∗Q, the multiplicative group of FQ, there exists some µ ∈ Fq such

that (θ, µθ) occurs qn−1 times in Tf (λ) for every θ ∈ Fq.

Definition 2. (Gong and Golomb, 2002 [3][2]) Let u = {ui} be a sequence over

Fq of period N = qn − 1 with trace representation u(x). If there is m > 1, a

proper factor of n, such that u(x) can be decomposed into a composition of h(x)

and g(x) where h(x) is a function from Fqn to Fqm , and g(x) a function from

Fqm to Fq, i.e.,

u(x) = g(x) ◦ h(x) (15)

or in diagram form
Fqn

↓ h(x)
Fqm

↓ g(x)
Fq

then we say that u(x) or u is subfield reducible, (15) is called a subfield factor-

ization of u(x) or u. Otherwise, u(x) or u is said to be subfield irreducible.

From this definition, we know that m-sequences of period qn− 1 are subfield

reducible if n is not a prime. Note that the subfield reducibility or irreducibility

of functions or sequences is meaningful only for n composite.

In [2], it is shown that the autocorrelation of a subfield reducible sequence

given by a(x) = f(x) ◦ h(x) where h(x) is a function from Fqn to Fqm with the

two-tuple balance property, and f(x) : Fqm → Fq is balanced, is equal to −1

for all values of τ 6≡ 0 (mod d) and the autocorrelation of a(x) for τ ≡ 0 (mod d)

is equal to the autocorrelation of f(x) multiplied by a scalar factor. (Refer to

Theorem 8.1 and Corollary 8.2 in [2] for details.) They also illustrated the effect

of autocorrelation of this type of subfield reducible sequences using an example

(Example 8.2 in [2]). In other words, there are only qm−1 autocorrelation values
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at τ ’s which are multiples of d which are undetermined. Compared to those τ ’s

whose correlation values are equal to −1 (there are qn−qm such τ ’s), the number

of undetermined values is relatively quite small and these τ values are far from

the origin (i.e., from τ = 0) since they are multiples of d = qn−1
qm−1 . This result and

its proof has its origin rooted in calculating autocorrelation functions of GMW

or generalized GMW sequences, geometrical sequences by Klapper, Chan and

Goresky [7] and k-form sequences [6] in which h(x) is a trace function Trn
1 (xk),

a cascaded GMW function, or a k-form function.

There is a similar result for the crosscorrelation between two such subfield

sequences and the proof also can be given in a similar fashion to that for their

autocorrelation functions. Unfortunately, this fact has not received sufficient

publicity. We reproduce it here.

Theorem 1. Let h be a function from Fqn to Fqm with the two-tuple balance

property, and f and g be any two functions from Fqm to Fq. Let a and b be two

sequences over Fq with a(x) = f(x) ◦ h(x) and b(x) = g(x) ◦ h(x) as their trace

representations, respectively. Let λ = ατ . Then Cf◦h,g◦h(λ), the crosscorrelation

between a and b, is given by

Ca,b(τ) + 1 = Cf◦h,g◦h(λ)

=





Ql−2
∑

x∈FQ
ηf(x)

∑
y∈FQ

η−g(y), λ /∈ Fq or τ 6≡ 0 (mod d)

= Ql−1Cf,g(λ), λ ∈ Fq or τ = jd, j = 0, 1, · · · .
In particular, if one of the functions f or g is balanced, then

Ca,b(τ) = Cf◦h,g◦h(τ)− 1 = −1, ∀τ 6≡ 0 (mod d).

Proof. For λ 6= 1,

Cf◦h,g◦h(λ) =
∑

x∈Fqn

ηf(h(λx))−g(h(x)) (16)

1. Assume λ /∈ F∗Q (recall Q = qm). In this case, substituting Condition 1 of

Definition 1 into (16), we have

Cf◦h,g◦h(λ) = Ql−2
∑

θ,µ∈FQ

ηf(θ)−g(µ)

= Ql−2
∑

θ∈FQ

ηf(θ)
∑

µ∈FQ

η−g(µ)

=⇒ Cf◦h,g◦h(λ) = 0 ( if one of f or g is balanced).
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2. Assume 0 6= λ ∈ FQ. Substituting Condition 2 of Definition 1 into (16), we

have

Cf◦h,g◦h(λ) = Ql−1
∑

θ∈FQ

ηf(µθ)−g(θ), 1 6= µ ∈ Fqm

= Ql−1Cf,g(µ).

For λ ∈ FQ, since β = αd is a primitive element in FQ, we may write

λ = βj = αjd =⇒ τ = jd which completes the proof.

¤
Thus, for two subfield reducible sequences, given by f ◦ h and g ◦ h where h

satisfies the two-tuple balance property and one of f and g is balanced, then their

crosscorrelation function takes the value −1 for all τ ’s which are not multiples of

d; i.e., there are qn − qm values of τ such that Ca,b(τ) = Cf◦h,g◦h(λ)− 1 = −1.

There are only qm−1 values of τ remaining undetermined. These undetermined

values depend on the crosscorrelation between f and g, i.e., Cf◦h,g◦h(αid) =

qn−mCf,g(βi), i = 0, 1, · · · , qm − 2 where β = αd.

Observe that the condition that makes Cf◦h,g◦h(λ) = 0 for so many values

of τ is rather weak, and it easily produces an almost LCZ signal set of gigantic

size. Before we discuss the size, we need the following lemma whose proof is

immediate from the balance property.

Lemma 1. Let U− be a set consisting of all shift-distinct sequences over Fq with

period qm− 1 and the balanced property. Let F− be a set consisting of functions

from Fqm to Fq with the balance property. Then an evaluation of any function

in F− is a sequence in U−. Furthermore,

|U−| = |F−|
qm − 1

.

Applying this lemma, we have the following result.

Theorem 2. Let Π0 be the set consisting of all subfield reducible sequences with

the trace representations f ◦ h where h is a fixed function from Fqn to Fqm with

the two-tuple balance property and the evaluation of f ’s runs through U−. Then

1. Any two sequences in Π0 are shift-distinct.
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2. For any two sequences in Π0, say a and b,

Ca,b(τ) = −1, ∀ τ 6≡ 0 (mod d).

Moreover, Π0 is a (N, r, 1, d) almost LCZ signal set where r = |U−|.

Proof. Let f ◦ h and g ◦ h be the trace representations of a and b, respectively.

Then a and b are shift-distinct if and only if the evaluations of f and g are

shift-distinct (see details in Section 8.1 in [2]). Since any two sequences in U−

are shift-distinct, then a and b are shift-distinct. The crosscorrelation property

directly follows from Theorem 1. ¤

Here are a few remarks about Theorem 2.

1. The size of Π0 is huge. Its lower bound is given by

r = |U−| ≥ (q − 1)qqm−1

qm − 1
. (17)

Note that f(x) = cx1 + f1(x2, · · · , xm), c ∈ F∗q is a balanced function where

f1(x2, · · · , xm) is an arbitrary function of m − 1 variables. There are q − 1

ways to pick c and qqm−1
ways to pick the function f1. Thus the size of F− is

greater than the product of (q− 1) and qqm−1
. By removing shift-equivalent

sequences, we have (17).

2. For q = pt where t > 1, let Π1 and Π2 be the sets consisting of the sequences

over Zq transformed from Π0 by (4) and the sequences over the complex

field transformed from Π0 by (6), respectively. Then both Π1 and Π2 are

(N, r, 1, d) almost LCZ signal sets.

3. Let h(x) : Fqn → Fqm which satisfies the following two conditions:

(i) h(x) is k-form, i.e., for any λ ∈ F∗qm and x ∈ Fqn , h(λx) = λkh(x),

gcd(k, qn − 1) = 1.

(ii) h(x) has the difference balance property, i.e., for any λ ∈ Fqn , λ 6= 1,

h(x)− h(λx) is balanced.

In 2002 [4], Gong and Song established essentially the following result:

Fact 1 If h(x) is k-form then it has cyclic array structure. If, in addition,

h(x) has the difference balance property, then it has the two-tuple balance

property.
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The known results on LCZ sequences come from the general construction for

Π0, in which either h is a monomial trace term [8][9] for q = 2 or q = p, or h

satisfies both k-form and the difference balance property [5] for q = 22. In all

this research, the results of Theorem 1 have been established repeatedly for

different subsets of U− where these subsets have their respective sizes smaller

than qm. Note that the results of Theorem 1 are very easy to establish via

exponential sums together with Fact 1.

Note that if Cf◦h,g◦h(0) = 0 or equivalently Cf,g(0) = 0, then Π0 becomes

a (N, r0, 1, d) LCZ signal set where r0 is the size of the subset, say K, of U−

which satisfies that the term-by-term difference of two shift-distinct sequences

is still a balanced sequence.

3 A Construction of K

In the following section, we provide an important result on the achievable up-

per bound for the size of K, a connection between constructions of K and the

Hadamard matrices, and a construction for K which achieves this upper bound.

The following theorem gives a more general result about an upper bound size of

K.

Theorem 3. Suppose K is a collection of balanced sequences over Fq of period

P (here we do not care whether or not they are shift distinct, and we do not

have to restrict the value of P ) such that the term-by-term difference of any

two sequences in K is again balanced. Then the size |K| of K (the number of

sequences in K) cannot exceed P .

Proof. In the following, we only give a proof for binary case, since the proof

for the q-ary case is similar to that for the binary case. Note that the term-by-

term difference of two binary sequences is the same as the term-by-term sum of

these two sequences.

Use +1 and −1 as the two binary values, and consider the sequences in K

as vectors of length P , i.e. of dimension P . The “balanced sums” property says

that the dot product of each pair of vectors is zero, so the vectors are orthogonal,

and the number of mutually orthogonal vectors cannot exceed the dimension of
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the vector space. (While this is the proof when P is even, it is easily modified

for odd P . If the dot product of each pair of vectors is always −1, add one extra

component to each of the vectors, and give this extra component the same value

for each vector, so we’ve added one to the dot products to make them all zero,

and each vector should now be exactly balanced between +1’s and −1’s. Since

the dimension is now P + 1, it is possible to have P + 1 mutually orthogonal

vectors; but the “all 1’s” vector is orthogonal to each of the others because

they are balanced, and the “all 1’s” vector is not balanced, leaving at most P

“balanced” vectors in the set K.)

¤

Corollary 1. Recall that U− denotes a set consisting of all the shift-distinct

balanced sequences over Fq of period qm − 1, and let K ⊂ U− which is closed

under the term-by-term differences of two sequences in it. That is, for any two

sequences in K their term-by-term difference is still balanced. Then the size |K|
of K is upper bounded by qm − 1.

Proof. This is the case of P = qm − 1 in Theorem 3.

¤
In this following, we show the relationship of the set K and a q-ary Hadamard

matrix.

Let H = (hij)v×v where hij = ωsij , sij ∈ Fq and ω is a primitive qth root

of unity. H is sai d to be a Hadamard matrix if HH∗ = vIv where H∗ = (h∗ij)

where x∗ is the complex conjugation of x and Iv is the v× v identity matrix. In

other words, H is a Hadamard matrix if the inner (or Hermitian dot if q > 2)

product of any two row vectors of H is equal to zero or any two row vectors of

H are orthogonal.

Note that H is symmetric and one of row vector of H is a constant vector.

Applying the elementary transforms to H, we can write H as a matrix in which

the first row so that the first column is the all one’s vector up to a linear trans-

formation. Let v = qm. Let H− denote the matrix resulting from H by deleting

the first column and the first row. We say that H− is the reduced form of H.

From the definition of the Hadamard matrices and Theorem 2, the following

result is immediate.
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Proposition 1. With the above notation, assume that H be a qm × qm matrix

over Fq, and let gj(αi) = sij where hij = ωsij , sij ∈ Fq and α is a primitive

element of Fqm . Let K be a set consisting of the sequences whose trace represen-

tations are gj’s, 1 ≤ j < qm}. Then K produces a LCZ signal set with parameters

(N, r0, 1, d) if and only if H is a Hadamard matrix. Furthermore, r0 = qm − 1

if and only if any two rows of H− are shift distinct when they are considered as

sequences.

Therefore, the classification of all LCZ signal sets with parameters (N, qm −
1, 1, d) by the subfield decomposition construction (Theorem 2) is equivalent to

the classification of all qm × qm Hadamard matrices for which row vectors in

the reduced forms are shift distinct. For these K’s, the sizes of K achieves the

maximum values.

Note that for the known constructions, |K| < qm−1 for q = p [9] and

|K| = qm/2 for q = 22 [5].

In the following, we give a construction for K in which the size |K| of K

achieves the upper bound qm − 1. For the construction given below, the case of

q = 2 has a much simpler proof. However, the proof for q > 2 cannot be obtained

from the case of q = 2 by simply replacing 2 by q, as Theorem 3. So, we will

directly proceed it for a general q.

Before we give a construction for K, we present the following result on bal-

anced functions.

Lemma 2. Let m = s + r, h(x) be a function from Fs
q to Fr

q with h(x) 6= 0 for

all x ∈ Fs
q, Φ(y) is a permutation of Fs

q, and t(x) is an arbitrary function from

Fs
q to Fq. Then f(x, y) = h(x) · Φ(y) + t(x) is a balanced function from Fqm to

Fq.

Proof. Since Φ(y) is a permutation of Fr
q, for a fixed nonzero element a ∈ Fr

q,

any element in Fq occurs exactly qr−1 times in the set consisting of {a ·Φ(y) | y ∈
Fr

q}. Note that h(x) 6= 0 for all x ∈ Fs
q. Therefore, for any c ∈ Fq, f(x, y) =

h(x) · Φ(y) + t(x) = c has qs+r−1 = qm−1 solutions of (x, y) in Fm
q where x ∈ Fs

q

and y ∈ Fr
q. Thus, f(x, y) is balanced.

¤
In the following, we set s = 1 and r = m− 1.
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Construction:

1. Choose ui(x), 0 ≤ i < qr − 1, qr − 1 functions from Fq to Fqr which satisfy

the following three conditions.

(a) For any x ∈ Fq, ui(x) 6= 0, 0 ≤ i < qr − 1.

(b) For any fixed x ∈ Fq, {u0(x), u1(x), · · · , uqr−2(x)} is a permutation of

F∗qr , i.e.,

{u0(x), u1(x), · · · , uqr−2(x)} = F∗qr .

(c) uj(x) is not a scalar multiple of ui(x) for i 6= j, i.e., there is no a ∈ Fqr

such that uj(x) = aui(x), x ∈ Fq when i 6= j.

2. Set Φ(y) = yt with gcd(t, qr − 1) = 1, which is a permutation of Fqr , and

choose t(x) any permutation of Fq with t(0) 6= 0.

In the following, we write the elements of Fqm as a pair (x, y) where x ∈ Fq

and y ∈ Fqr (r = m− 1). We construction a set of functions from Fqm to Fq as

follows.

S = {ui(x) · Φ(y) + at(x) | 0 ≤ i < qr − 1, a ∈ Fq} ∪ {bt(x) | b ∈ F∗q}

where ui(x) ·Φ(y) is the dot product of ui(x) and Φ(y) when they are identified

as two vectors over Fq of dimension r. If q = 2, then we simply use t(x) = x.

We may feature the above three conditions for ui(x) using the following array.

Let Fq = {α0 = 0, α1 = 1, α2, · · · , αq−1}, and let H = (hij) be a (qr − 1) × q

array whose entries are given by uij = ui(αj), 0 ≤ i < qr − 1, 0 ≤ j < q, i.e.,

U =




u0(α0) u0(α1) · · · u0(αq−1)
u1(α0) u1(α1) · · · u1(αq−1)
...
uqr−2(α0) uqr−2(α1) · · · uqr−2(αq−1)




The three conditions on ui(x) are as follows: (a) uij 6= 0, 0 ≤ i < qr−1, 0 ≤ j < q;

(b) each column of U is a permutation of elements of F∗qr ; and (c) each row is

not a scalar multiple of another row.

Theorem 4. Let K be the set consisting of sequences which are evaluations of

functions in S. Then K produces a (N, qm − 1, 1, d) LCZ signal set using the

construction given in Theorem 2.
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In order to prove Theorem 4, we need the following two lemmas.

Lemma 3. With the notation in Theorem 4, for q > 2, there exist some a, δ ∈
F∗q wuch that

t(δx) = at(x),∀x ∈ Fq

if and only if a = 1 and δ = 1.

Proof. Let t(x) =
∑q−2

i=0 tix
i, ti ∈ Fq (note the fact that t(x) is a permutation

of Fq implies that tq−1 = 0). Thus

t(δx) = at(x) =⇒
q−2∑

i=0

tiδ
ixi = a

q−2∑

i=0

tix
i. (18)

Hence (18) is true if and only if tiδ
i = ati for all i with 0 ≤ i ≤ q − 2. For those

i’s such that ti 6= 0, we have δi = a. This yields

t(δ · 1) = ag(1)− at0 + t0. (19)

On the other hand, we have

t(δ · 1) = at(1). (20)

Substituting it into (19), we have t0 − at0 = 0. Since t0 6= 0 by the assumption,

this derives that a = 1. Then we have t(δ) = t(1). Since t(x) is a permutation,

δ = 1 which completes the proof.

¤

Lemma 4. Let u(x) be a function from Fq to Fqr , Φ(y) be an arbitrary permu-

tation of Fqr , and h(x) be a function of Fq. Then u(x) ·Φ(y) = h(x) if and only

if both u(x) and h(x) are zero functions, i.e., u(x) = 0 and h(x) = 0.

Proof. If u(x) is not a zero function, then there exists some x0 ∈ Fq such that

u(x0) 6= 0. Since Φ(y) is a permutation of Fqr , each element of Fq occurs exactly

qr−1 times in {u(x0)·Φ(y) | y ∈ Fqr}. Thus this set is not equal to {h(x0)} which

consists of only one element in Fq.

¤
Proof of Theorem 4. We need to show that the sequences in K satisfies the

following three conditions:

14



1. Each sequence in K is balanced with period qm − 1.

2. The term-by-term difference of any two of sequences in K is balanced.

3. Any two sequences in K are shift distinct.

Note that t(x), considered as a function from Fqm to Fq, is balanced. Thus,

according to Lemma 2, the condition (a) for hi(x) shows that each function in

S is balanced. For two functions f(x, y) and g(x, y) in S, we have the following

three cases.

f(x, y) g(x, y)
(i) ui(x) · Φ(y) + at(x), a ∈ Fq uj(x) · Φ(y) + bt(x), b ∈ Fq

(ii) ui(x) · Φ(y) + at(x) bt(x)
(iii) at(x) bt(x)

For cases (ii) and (iii), it is obvious that f(x, y) − g(x, y) is balanced. For case

(i), we have f(x, y)− g(x, y) = [ui(x)− uj(x)] · Φ(y) + (a− b)t(x), according to

condition (b) of the ui’s, ui(x) − uj(x) 6= 0 for all x ∈ Fq. Again using Lemma

2, f(x, y)− g(x, y) is balanced. Thus the difference of any two functions in S is

balanced.

If two sequences given by f(x, y) and g(x, y) are shift equivalent, then we

have

g(x, y) = f(δx, σy), x, δ ∈ Fq, y, σ ∈ Fqr . (21)

From Lemmas 3 and 4, if f(x, y) and g(x, y) belong to the cases (ii) and (iii),

then they are shift distinct. So, we only need to consider case (i) for these two

functions.

We use the self-dual basis in Fqr , then we can write ui(x)·Φ(y) = Trr
1(ui(x)yt)

where Φ(y) = yt. Thus we have

f(δx, σy) = ui(δx) · Φ(σy) + at(δx) = Trr
1(ui(δx)σtyt) + at(δx)

g(x, y) = Trr
1(uj(δx)yt) + bt(x)

g(x, y) = f(δx, σy) =⇒ Trr
1

(
[ui(δx)σt − uj(x)]yt

)
= bt(x)− at(δx).

Again using the interchange of the dot product and the trace representation, the

above identity yields

u(x) · yt = h(x)

where u(x) = ui(δx)σt − uj(x) and h(x) = bt(x) − at(δx). Applying Lemma

4, we obtain that u(x) = 0 and h(x) = 0. For h(x) = 0, we have bt(x) =

15



at(δx). According to Lemma 3, it follows that a = b and δ = 1. Substituting

δ = 1 into u(x) = 0, we have uj(x) = σtui(x). According to the condition

(c) of the construction of ui(x)’s, it follows that i = j and σ = 1. Therefore

f(x, y) = g(x, y). Thus, any two sequences in K are shift-distinct, and |K| =

(qr − 1)q + (q − 1) = qm − 1.

¤

From Theorems 3, the construction achieves the upper bound on the size of

the LCZ signal set. We list the functions in S as S = {gi | 0 ≤ i < qm − 1}.
Using Proposition 1, the matrix H = (hi,j) whose entries are given by hi+1,j+1 =

ωgi(αj), 0 ≤ i, j < qm − 1, and h0,j = 1, 0 ≤ j < qm and hi,0 = 1, 0 ≤ i < qm, is

a Hadamard matrix in which any two row vectors in H− are shift distinct.

Example 1. Let m = 4, q = 2, F23 be defined by α3 + α + 1 = 0 and F24 be

defined by λ4 + λ + 1 = 0. We choose hi(x), a function from F2 to F23 , given as

follows, which satisfy the three conditions of hi(x), 0 ≤ i < 7.

i ui(0) ui(1)
0 001 010
1 010 011
2 100 111
3 011 001
4 110 100
5 111 110
6 101 101

Set Φ(y) = y3. We denote the elements of F24 as λi and represent λi = x3λ
3 +

x2λ
2+x1λ+x0, xi ∈ F2 as a pair (x, y) where x = x3 and y = x2λ

2+x1λ+x0. The

set K consists of fifteen binary sequences of period 15, in which the first seven

sequences, denoted by si, i = 0, · · · , 6, are given by f(x, y) = ui(x) · Φ(y), which

are listed in Table 1. The second group of seven sequences are given by ui(x)·y3+

x which can be obtained from si by the complement bits which correspond to x =

1, and the last one is given by x which is {Tr4
1(λ

i)}i≥0, i.e., 000100110101111.

This gives an LCZ signal set with parameters
(
24k − 1, 15, 1, 24k−1

15

)
for any

positive integer k > 1, which achieves maximum size for these parameters.
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Table 1. Seven sequences given by ui(x) · Φ(y)

i λi y3 s0 s1 s2 s3 s4 s5 s6

= xλ3 + y

0 0001 001 1 0 0 1 0 1 1

1 0010 011 1 1 0 0 1 0 1

2 0100 101 1 0 1 1 1 0 0

3 1000 000 0 0 0 0 0 0 0

4 0011 100 0 0 1 0 1 1 1

5 0110 111 1 1 1 0 0 1 0

6 1100 101 0 1 0 1 1 1 0

7 1011 100 0 0 1 0 1 1 1

8 0101 110 0 1 1 1 0 0 1

9 1010 011 1 0 0 1 0 1 1

10 0111 010 0 1 0 1 1 1 0

11 1110 111 1 0 1 1 1 0 0

12 1111 010 1 1 1 0 0 1 0

13 1101 110 1 1 0 0 1 0 1

14 1001 001 0 1 1 1 0 0 1
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4 Conclusion and Open Problems

We use two known results in the recent book by Golomb and Gong [2]:

(a) Definition of correlation for sequences over Fq where q = pt, t > 1 (Chap-

ter 5 in [2]); and

(b) Autocorrelation of a subfield reducible sequence over Fq with trace rep-

resentation f ◦ h where h(x) is a function from Fqn to Fqm with the two-tuple

balance property where m is a proper factor of n, f(x) is a balanced function from

Fqm to Fq whose autocorrelation functions has the value −1 everywhere except

for τ = jd, j = 0, 1, · · · , qm − 2 where d = qn−1
qm−1 = qm(l−1) + qm(l−2) + · · · qm + 1

(where n = lm), and for τ = jd, the autocorrelation of the sequence at jd is equal

to the autocorrelation of the sequence given by f at j, j = 0, 1, · · ·. (Theorem 8.2

and Corollary 8.3 in [2].)

Consequently, we obtain a huge set of subfield reducible sequences over Fq

of period qn − 1 with correlation values −1 everywhere except for the values at

τ = jd, 0 ≤ j < qm−1 where m is a proper factor of n. The number of sequences

in this set is equal to the number of balanced functions from Fqm to Fq divided by

qm − 1. From this result, we constructed the signal set Π0 with low correlation

zone, i.e., the crosscorrelation of any two sequences or autocorrelation of any

sequence in this set is equal to −1 for the absolute value of τ 6= 0 and less than

d. The size of Π0 is equal to the number of shift-distinct balanced sequences over

Fq with period qm − 1. From Π0, we derived the other two signal sets with the

same parameters as those of Π0, but one consists of sequences over Zq and the

other consists of sequences over the complex q-th roots of unity where q = pt for

t > 1.

If we require the crosscorrelation of any two sequences in Π0 is equal to

−1 at τ = 0, we showed that from the subfield factorization construction, the

size of any LCZ signal set cannot exceed qm − 1, the relationship between these

functions and Hadamard matrices, and we also provided a construction for this

type of signal set in which the size achieves the maximum for any q.

For research on finding some new constructions of subfield reducible se-

quences over Fq with 2-level autocorrelation, or with low correlation and/or

with low correlation zone, it would be worthwhile to put some effort into the

following unsolved problems.
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Construction of h(x) in the set Π0:

Any sequence in Π0 is given by f ◦h(x) where f(x) : Fqm → Fq with the balanced

property and h(x) : Fqn → Fqm with either (a) the two-tuple balance property,

or (b) with k-form and the difference balance property. The other construction

for h(x) using f ◦ h(x) produces a sequence with an interleaved structure (see

[2] for details).

There are only two known constructions for h(x) being either two-tuple bal-

anced or being k-form with the difference balance property.

(i) h(x) is a single trace term, i.e., h(x) = Trn
m(xk), which gives m-sequences

over Fq.

(ii) h(x) is a cascaded GMW function of length s, which produces a cascaded

GMW sequence over Fq.

Up to now, neither two-tuple balanced functions nor k-form functions with

the difference balance property have been found which do not fall into one of

the above two cases.

Open Question 1: Is the converse of Fact 1 true? In other words, is the

two-tuple balance property on a function h(x) : Fqn → Fqm equivalent to the

condition of both k-form and the difference balance property of the function

h(x)?

Open Question 2: For each such h(x), we have a set Π0, which is an almost low

correlation zone signal set with parameters (qn−1, r, 1, d) where r is the number

of shift-distinct balanced sequences over Fq with period qm − 1, and d = qn−1
qm−1 .

Thus the most interesting realizations for Π0 are those in which the evaluations

of the h(x)’s are neither m-sequences nor (cascaded) GMW sequences. In other

words, does there exist a function h(x) : Fqn → Fqm whose evaluation is neither

an m-sequence nor a (cascaded) GMW sequence but which has the two-tuple

balance property (or, sufficiently, which is k-form with the difference balance

property)?
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