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Abstract 

Consider a many-server queueing system in which the servers are numbered. 
If a customer arrives when two or more servers are idle he selects the server 
with lowest index (this is called the ordered entry selection rule). An explicit 
expression for the traffic handled by the various servers in a GI/M/s queueing 
system with ordered entry is derived. For the M/M/s queueing system the 

probability distribution of the number of busy servers among the first k(k = 

1,2, - - -, s) servers will be given. Finally, a formula for the traffic handled by the 
first server in an MID/s system will be derived. All results are derived under 

steady-state conditions. As an application some numerical data for the server 
utilizations will be given and compared to data obtained from simulation studies 
of a closed-loop continuous belt-conveyor. 

SERVER UTILIZATION; CONVEYOR THEORY 

Introduction 

Consider a many-server queueing system in which the servers are numbered 
from 1 to s. Assume that any arriving customer who finds more than one server 

idle, selects among the idle servers the one with lowest index. This selection rule 
is known as the 'ordered entry rule', see e.g. Disney [2]. In using this selection 
rule the traffic handled by the various servers will differ. It is the objective of this 

paper to derive an explicit expression for the traffic handled by the kth server 

(1 ?- k ?- s) for the queueing systems GI/M/s and M/M/s, under steady-state 
conditions. Moreover, for the M/M/s system, the probability distribution of the 
number of busy servers among the servers with index 

_ k, will be given. Finally, 
as an isolated result, the traffic handled by the server with lowest index in the 

M/D/s system will be derived. 
The problem considered is of interest for the analysis of so-called closed-loop 

circulating conveyors in which the 'ordered entry rule' is induced by the 
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Many -server queueing systems with ordered entry 145 

geometrical configuration of the system, see e.g. Pritsker [7], Phillips and Skeith 

[6] and Proctor et al. [8]. In these studies it was found that the traffic handled (i.e. 
server utilization) by the various servers seems to be independent of the 

circulation time of the conveyor (see also Nawijn and Rooda [5]). By assuming a 
zero circulation time the conveyor models become equivalent to many-server 
queueing systems with ordered entry. 

1. The GI/M/s queueing system 

Consider the GI/M/s queueing system with interarrival-time distribution 
function G(-), with mean A-', and with service-time distribution function 
1 - e -,", x > O0, in which the servers are numbered from 1 to s. Let us denote by 
X(t) the number of customers in the system at time t and let Y(')(t) denote the 
number of busy channels among the servers numbered 1 to k. Define the 
imbedded Markov chain (X,, Y()) = 

(X(t, - 0), Y(k)(t, 
- 0)), in which t, denotes 

the nth arrival epoch, with state space {0, 1, .. , ...} {0, 1, , k}. Obviously, 
Ynj' X, and Yn) = k if Xn 

_ 
s. It will be assumed that A < ts and the servers 

are selected according to the ordered entry rule. 
Let the stationary distribution of the Markov chain, which exists since A < t.s, 

be denoted by 

(1) P(k, = Pr{X = n, y(k = m} lim Pr{X, = n, y(k) = m X,, y19k)} 

for n - 0, O 5 m 
- 

min(n, k). 
Recall the following result (see Takaics [10], Theorem 1, p. 148): 

(2) Pr{X = n } = Awo"-, n - s, 

(3) A = l/[(1-ow)-' + S I 
() {s(I- )-j 

=i Ci(1 
- ) s (1- 0) - j 

in which w is the only root of the equation w = F(sCt(1 - w)) in the unit circle 
where Q(L)= fo e-"dG(x) and i = F(jti) and 

(4) C (= 
1-,p' 

j=1,2,..-; (Co l). 

Introducing the generating function 

s-1 k 

(5) H' '(zl, z2) 
= 

m•Z P zz2m 
n=O m=O 

it follows by standard methods that H(k)(zi, z2) satisfies the following integral 
equation: 
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146 W. M. NAWIJN 

H(k)(z, z2) f(x, ZZ2)H) f(x, z), 
f 

(x, zz2) dG(x) Jo f(x, z,) 

+ z,(1- z2) P?k) e -""f(x, z,)'-kf(X, zz2 )kdG(x) 
i=k 

(6) 
+ A f es '{f(x,z,)- 1 + e-"'}-f{f(x, ZI2)- 1 + e "'} 

? sldtdG(x)- Az z~, where f(x, z)= 1- e-x + ze "x 

Inserting z2 = 1 one obtains an integral equation for H(k)(z I, 1) solved by Takaics 

[10], p. 151. Using the same method one can solve the integral equation for 

H'k)(1, z) obtained by taking z = 1. 
Define the binomial moments 

- .i(7) 
H)=1 

d' ) 
(7) H j d H''(, z),, j =0,1,-,k. 
Observe that 

H'ok = H'k)(1, 1) = Pr{X - s - 1} = 1 - A/(1 - w) 
(8) s-, 

H(k) = PZ ,k 
i=O 

where HV(' is the probability that an arriving customer immediately enters one of 
the servers k + 1, -,s. 

It turns out that 

k A (k) ( jk) k+1 
ik 

(9) +' = k ' E 
=r+ G S=r+l 

Cj-I 

for r = 0, 1, -, k. Taking r = 0 in (9) and using (8) we obtain 

((1) 0) HG= 1( 
/ 

s(1-)j) 
- j kk 1 

(10) H _ _ k A(k _ 

The distribution of y(k) can be determined from the binomial moments by 

Pr{Y(k) = m} = Pr{Y(k) = m,X = s - 1} = r() - 
r Hk) 

(11) when 
0_ 

m 
=5- 

k -1 

and 

(12) Pr{Y(k)= k}= Pr{X s - 1, 
Y'(k)=k}+Pr{X_ 

s} = Hk)+ A 
1-w 
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Many -server queueing systems with ordered entry 147 

Theorem 1. Let 7k, k = 1,2,.., s, denotes the traffic handled by the k th 

server, then 

kI, k))+ A A 
(13) k = 

_p(Hk1- 
H1)+ SP A ,where p and H 

- 
1- A/(1-o). s 1-o C 

Proof. Observe that there are two mutually exclusive ways in which an 

arriving customer can enter the k th server: either the k th server is the server 
with lowest index among all idle servers (call this event E1) or all servers are busy 
upon his arrival and he eventually will enter the kth server (call this event E2). 
Now it is readily seen that Pr{EI} = 

H'k-)- 
H k), k = 1,2, -, s, where H0) = 

Pr{X - s - 1}. Since the service times are independent exponentially distributed 
and independent of the arrival process a waiting customer may enter any server 
with equal probability, hence 

1 1A 
Pr{E2}= Pr{X s}= 1- 

s = sl-to 

(cf. (2)). It follows that the expected number of customers served by the k th 
server per unit of time is given by 

A A 
A (H-k'' 

- 
H)) +S W 

from which '7k is found by multiplying by L-I', the expected service time. 
Note that 

AA A A 
(14) 

~ 
= p (H(0)-H•s))+ p 

1- -p+ 1 p 

as indeed it must. 

2. The M/M/s queueing system 

As a particular case suppose that the customers arrive according to a 

stationary Poisson process, i.e. G(x)= 1-e-xe, x >0. Then, since F(D)= 
A /(A + 4), we have 

(15) ij =p/(p+j) and 
C,= p' j = 1 

2,- 

and &o = p/s. 
Substituting this into (10) yields 

k! 
(16) HSk _= Pr{X 5 s}- Pr{X = s}. 
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148 W. M. NAWIJN 

Hence, from Theorem 1, we obtain for k = 1,2, - , s 

(17) 
"1k 

= p{El.k-,(P)- E,.k (p)}Pr{X - s} + Pr{X > s}, 

in which E,,k(p)= (pk/k!)/I2=op'/j!, Erlang's loss formula, and the prob- 
abilities Pr{X _ s} and Pr{X > s} are well known. 

Moreover it follows by straightforward calculations from (9)-(12) that 

Pn 
Pr{Y(k' = n} Pr{X s}, n = 

0,, 
, k - 1, 

(18) (18) pk Pr{X _ s}+ Pr{X > s}, n = k. 

Note that the distribution of y(k) also holds for an arbitrary point in time and 
moreover that the quantity Trk can also be interpreted as the utilization of the 
kth server, i.e. the fraction of time that the server is busy. 

Remark. The relations (17) and (18) could also be obtained using the 

following observation. Let p(i) and q(i) be respectively the steady-state 
probabilities for the MIMIs loss and queueing system with ordered entry, in 
which the vector i = (i, i, i2 i ) denotes the state of the servers, that is i, = 1 
when server j is busy and = 0 otherwise. 

By comparing the steady-state balance equations for both systems when 

{X ? s} it follows, noting that sti Pr{X = s + 1} = A Pr{X = s}, that q(i)= cp(i) 
where c is some positive constant. In view of this property it is readily seen that 

(19) 7k = 'k (loss). Pr{X 
- 

s} + Pr{X > s}, 

in which r/k (loss) is the traffic handled by the kth server in the loss system. 
In an M/G/s loss system with ordered entry the traffic handled by the kth 

server easily follows from the fact that the input rate of the kth server is the 
difference between the overflow rates of the (k - 1)th and k th server and is given 
by 

(20) 
rk 

(loss)= 
p{E,•k,(p) 

- EI.k (p)}, k = 1,2,-.., 
s. 

Moreover, observe that the first k servers in the M/M/s loss system form an 

M/M/k loss system. Hence, in view of q(i)= cp(i), it follows that 

(21) Pr{Y'"= nIX s } 
/nl 

n<. k,, 

from which (18) is a ready consequence. 
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Many -server queueing systems with ordered entry 149 

Relations (17) and (18) have been known for a long time, see Cooper [3], p. 
124, who attributes (17) to Kendrick (1923). These results can be generalized for 
the heterogeneous-server case using the same argument, see Cooper [4]. 

3. The M/D/s queueing system 

As the M/G/s system is much harder to analyse than the GI/M/s system it is 

questionable if similar exact results could be found for the M/G/s system with 
ordered entry. In the particular case MID/s, however, the following isolated 
result can be proved. 

Theorem 2. In a stationary MID/s queueing system with ordered entry the 
traffic handled by the first server is given by 

(22) 
7,p /[p+exp{-_ 

1 
1 

c 
(pn " 

. 

Proof. Let the customer starting a busy period of the first server be called cl. 
Now observe that such a busy period is always composed of the service times of 
the customers c1, cs+, c2s+1 * * *, as long as they arrive during this busy period 
initiated by c1, provided of course that the ordered entry rule is applied. 
Consequently, this busy period is equivalent to a busy period in an E,/D/1 
queueing system, i.e. the interarrival-time distribution is the s-fold convolution 
of the negative exponential distribution 1 - e-x, x 

_ 0. The above observation 

originated from Pollaczek's derivation of the waiting-time distribution in the 
MID/s queueing system, see e.g. Riordan [9], p. 117. 

Let E{p} denote the expected length of a busy period in a GI/G/1 queueing 
system. Then, see e.g. Cohen [1], p. 286, 

1 1 (23) E{p} = - exp - . Pr(s_ > O), 

where 

Sn = (r, - oi+), n = 1,12, . - i=l 

in which 
7• 

denotes the service time of the ith arriving customer and o-i, denotes 
the interarrival time between customer i and i + 1. 

Note that for the system El/D/1 we have (i) 7- 
= 4 -' (i = 1,2,-.- ) and (ii) o-i, 

is the sum of s independent negative exponentially distributed variables with 
mean A-'. 

Hence 

(24) Pr{s. > } = 1- -" = -"" ;=0 j= O=ns / 
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150 W. M. NAWIJN 

Observe that the length of an idle period of the first server is negative 
exponentially distributed with mean A -' and moreover that the sequence of idle 
and busy periods are mutually independent. 

Let us denote the state of the server at time t by E, where E, = 1 if the server is 

busy at time t and E, = 0 otherwise. The process {E, t > 0} is an alternating 
renewal process, which is obviously regenerative with respect to the sequence of 

busy cycles, hence 

- t (1/A)+(/)E{p} 

The theorem now immediately follows from (23), (24) and (25). 

Remark. Relation (22) could also be written as 

(26) r, = p/(1 + p - Pdelay) 

in which Pde,lay gives the stationary delay probability in an MIDIs queueing 
system, see Riordan [91, p. 117. 

4. An application to a closed-loop continuous belt-conveyor 

Consider a conveyor belt moving continuously in a closed loop with uniform 

speed. At some point along the conveyor jobs, arriving according to some 
stochastic point process, are loaded onto the conveyor. Each job has to be 

processed at one of a number of identical workstations, situated along the 

conveyor. Since there are no buffer storages at the stations, a server (i.e. an 

operator) has to wait for an arrival of a job on the conveyor once he has finished 
the processing of a job. A job that has not been unloaded by one of the servers 
will recirculate. The time, T say, for the conveyor to make one revolution is 
called the recirculation time. This conveyor model has been studied, using 
simulation, by several authors, see [51-[8]. One of the results found was that the 
server utilizations seem to be independent of the recirculation time. This 

insensitivity property suggests choosing T = 0 and solving the resulting model 

analytically. Clearly when T = 0 the model becomes equivalent to a many-server 
queueing system with ordered entry. Notice that for T > 0 the conveyor model 
can be viewed as a congestion system with repeated calls, in which the repetition 
time is constant, a model known from telephone traffic theory, see e.g. Riordan 

[9], p. 94. 
We illustrate below the use of the formulas (13) and (17) and compare some 

numerical results with simulation results obtained by Pritsker [7] and Nawijn and 
Rooda [5]. Before doing so it is worth mentioning that the server utilizations for 

large values of T can be approximated using a classic method from telephone 
traffic theory, see Wilkinson [11], p. 426. The idea of this method is to replace the 
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Many -server queueing systems with ordered entry 151 

system under consideration by an 'equivalent' M/M/s loss system with arrival 
rate A + e, in which e measures the overflow rate in the original system. Now e is 
determined such that the traffic handled by the s servers in this loss system 
equals p = A /11, where -' is the mean processing time. Hence e is the (unique) 
positive root of 

(27) e = (A + 
e)E,, 

(p + e/tL) 

and the server utilizations are determined from (20) with p replaced by p + e /I. 
Tables 1 and 2 give the server utilizations when s = 5 for a Poisson and a 

deterministic arrival process. The simulation results from [5] and [7] in these 
tables show the insensitivity property. The results are in reasonable agreement 
with the numerical values obtained by the analytical formulas. There is a 
tendency for the utilizations of the lower-indexed servers to decrease and for the 
higher-indexed to increase as T increases. 

TABLE 1 
Server utilizations in M/M/s conveyor system (A = 1) 

T P Pi P2 P3 P4 P5 source 

0 4 0.889 0.854 0.810 0.755 0.691 (17) 
1 4.023 0.889 0.854 0.814 0.763 0.703 [5] 
5 3.999 0.874 0.846 0.805 0.761 0.713 [5] 

20 4.002 0.869 0.841 0.807 0.765 0.720 [5] 
0o 4 0.872 0.844 0.809 0.764 0.709 (20), (27) 

TABLE 2 
Server utilizations in a D/M/5 conveyor system (A = 1) 

T P P2 P3 P4 ps source 

0 2 0.787 0.628 0.390 0.158 0.036 (13) 
2 2.030 0.779 0.639 0.384 0.170 0.043 [7] 
4 2.068 0.792 0.634 0.391 0.177 0.045 [7] 

Remark. The simulation results of Pritsker [7] are based on a run length of 
4000 time units (A = 1). The results from [5] are based on regenerative cycles 
giving 95 per cent confidence intervals ranging from (0.875, 0.899) and (0.664, 
0.740) for pi and P5 respectively at T = 1 to (0.867, 0.871) and (0.715, 0.725) for pi 
and p5 respectively at T = 20. 

Table 3 gives as a typical example the effect of the interarrival-time distribu- 
tion on the server utilizations in the GI/M/5 system with ordered entry for 
p = 4. Apparently the server utilizations of the lower-indexed servers increase as 
the variance of the interarrival-time distribution decreases. The lower the value 
of p/s the stronger this effect will be; see Table 4 with s = 2 and p = 1. 
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TABLE 3 

G PP2 P3 P4 

M 0.889 0.854 0.810 ()0.755 0.691 

E, 0.902 0.866 0.816 0.749 0.667 

E4 0.911 0.874 0.821 0.745 0.649 

E,,, 0.916 0.880 0.825 0.743 0.636 
D 0.921 0.884 0.828 0.742 ()0.625 

TABLE 4 

G pi P2 

M 0.583 0.417 

E, 0.610 0.390 

E4 0.629 0.371 

E,,, 0(.644 0.356 
D 0.655 0.345 
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