
A Note on Maximal Triangle-Free Graphs

Wayne Goddard, University of Pennsylvania

Daniel J. Kleitman, Massachusetts Institute of Technology1

Abstract

We show that a maximal triangle-free graph on n vertices with minimum

degree δ contains an independent set of 3δ − n vertices which have identical

neighborhoods. This yields a simple proof that if the binding number of a

graph is at least 3/2 then it has a triangle. This was conjectured originally by

Woodall.

We consider finite undirected graphs on n vertices with minimum degree δ. A

maximal triangle-free graph is one which does not contain the triangle K3 but the

addition of any edge would create a triangle. Equivalently, it is a triangle-free graph

of diameter two. We say that two (nonadjacent) vertices of a graph are similar if

they have the same neighborhoods. Similarity is obviously an equivalence relation.

In this paper we show that in a maximal triangle-free graph there is a similarity

class of size at least 3δ − n. As a consequence we obtain a short proof that if the

binding number of a graph is at least 3/2 then the graph contains a triangle.

We denote the set of neighbors of a vertex x by N(x) and the degree of x by

deg (x). For a set S of vertices, the neighborhood of S, denoted N(S), is given by

the set of all vertices which are adjacent to a vertex in S (i.e.
⋃

v∈S N(v)). Then the

binding number of the graph is the minimum of |N(S)|/|S| taken over all nonempty

sets S of vertices such that N(S) is not the whole graph. Further, we denote the

number of vertices in the similarity class of vertex x by s(x).

Theorem 1 Let G be a maximal triangle-free graph on n vertices with minimum

degree δ. Then there is a vertex v such that

s(v) ≥ δ + 2 deg (v) − n.

In particular, if G has no pair of similar vertices then δ ≤ (n + 1)/3.
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Proof. If every two nonadjacent vertices are similar then G is a complete

multipartite graph. Indeed G is a complete bipartite graph, and the conclusion of

the theorem holds for any vertex v of minimum degree.

Otherwise there exist vertices a and b that are nonadjacent and dissimilar. Let

a and b be such a pair for which the overlap |N(a)∩N(b)| is maximized. Since a and

b are dissimilar, there is a vertex x in N(a)−N(b) say. Observe that N(x)∩N(b) is

nonempty; otherwise the edge xb may be added to G without producing a triangle.

There are two cases:

1. There are vertices y1 and y2 in N(x)∩N(b) such that y1 and y2 are dissimilar.

Since G is triangle-free, the two sets N(x) ∪ N(b) and N(y1) ∪ N(y2) are

disjoint. Likewise, the two sets N(a)∩N(b) and N(x)∩N(b) are disjoint. By

our choice of the pair {a, b} it holds that |N(y1) ∩ N(y2)| ≤ |N(a) ∩ N(b)|.

Hence

n ≥ |N(x) ∪ N(b)| + |N(y1) ∪ N(y2)|

= deg (x) + deg (b) − |N(x) ∩ N(b)| + deg (y1) + deg (y2) − |N(y1) ∩ N(y2)|

≥ deg (x) + deg (y1) + deg (y2) + (deg (b) − |N(x) ∩ N(b)| − |N(a) ∩ N(b)|)

≥ deg (x) + deg (y1) + deg (y2).

Thus δ ≤ n/3, and the conclusion of the theorem holds for any vertex v of

minimum degree.

2. All the vertices in N(x) ∩ N(b) are similar. Let y be a vertex in the set

Y = N(x)∩N(b). Note that s(y) = |Y |, and that y /∈ N(a). We may assume

that the vertices in X = N(y) ∩ N(a) are similar, otherwise we are back in

Case 1. Note that x ∈ X.

Since G is triangle-free, the two sets N(x)∪N(b) and N(y) are disjoint. Thus

n ≥ deg (x) + deg (b) − |Y | + deg (y).

Similarly, n ≥ deg (y) + deg (a) − |X| + deg (x). Addition of these two in-

equalities yields:

s(x) + s(y) + 2n ≥ 2 deg (x) + 2 deg (y) + 2δ.

Thus the statement of the theorem holds either for v = x or for v = y.

qed

If G is an r-regular maximal triangle-free graph on n vertices, then Theorem 1

shows there is a similarity class in G of size at least 3r − n. This is sharp for a

2



number of graphs including: the complete bipartite graph K(b, b); the expansion of

the 5-cycle C5 ⊗ Ks which has 5s vertices, is 2s-regular and has similarity classes

of size s; and the complement Cr−1

3r−1
of the (r − 1)st power of the cycle on 3r − 1

vertices, which is r-regular and has no pair of similar vertices.

As a consequence of Theorem 1 we obtain another proof that the binding number

at least 3/2 guarantees the existence of a triangle. This result, along with Woodall’s

more general conjecture [3] that binding number at least 3/2 guarantees cycles of

all lengths, was first established by Shi [1, 2]. This proof is much simpler than Shi’s

proof of the triangle part of Woodall’s conjecture.

Theorem 2 Let G be a graph on n vertices. If for every set S of vertices it holds

that |N(S)| ≥ min(3|S|/2, n), then G has a triangle.

Proof. Let G be triangle-free. We must find an S with |N(S)| < min(3|S|/2, n).

Clearly we may assume that G is maximal triangle-free.

We claim that there is a vertex v for which s(v) ≥ 2 deg (v) − 2n/3. If δ < n/3

this is obvious; if δ ≥ n/3 then use Theorem 1. So let S denote the set of vertices

not in N(v). Then |N(S)| ≤ n − s(v). Further, |S| = n − deg v ≥ 2n/3 − s(v)/2.

Thus |N(S)| ≤ n − s(v) < n − 3s(v)/4 ≤ 3|S|/2. qed
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