# A Note on Maximal Triangle-Free Graphs 

Wayne Goddard, University of Pennsylvania<br>Daniel J. Kleitman, Massachusetts Institute of Technology ${ }^{1}$


#### Abstract

We show that a maximal triangle-free graph on $n$ vertices with minimum degree $\delta$ contains an independent set of $3 \delta-n$ vertices which have identical neighborhoods. This yields a simple proof that if the binding number of a graph is at least $3 / 2$ then it has a triangle. This was conjectured originally by Woodall.


We consider finite undirected graphs on $n$ vertices with minimum degree $\delta$. A maximal triangle-free graph is one which does not contain the triangle $K_{3}$ but the addition of any edge would create a triangle. Equivalently, it is a triangle-free graph of diameter two. We say that two (nonadjacent) vertices of a graph are similar if they have the same neighborhoods. Similarity is obviously an equivalence relation. In this paper we show that in a maximal triangle-free graph there is a similarity class of size at least $3 \delta-n$. As a consequence we obtain a short proof that if the binding number of a graph is at least $3 / 2$ then the graph contains a triangle.

We denote the set of neighbors of a vertex $x$ by $N(x)$ and the degree of $x$ by $\operatorname{deg}(x)$. For a set $S$ of vertices, the neighborhood of $S$, denoted $N(S)$, is given by the set of all vertices which are adjacent to a vertex in $S$ (i.e. $\bigcup_{v \in S} N(v)$ ). Then the binding number of the graph is the minimum of $|N(S)| /|S|$ taken over all nonempty sets $S$ of vertices such that $N(S)$ is not the whole graph. Further, we denote the number of vertices in the similarity class of vertex $x$ by $s(x)$.

Theorem 1 Let $G$ be a maximal triangle-free graph on $n$ vertices with minimum degree $\delta$. Then there is a vertex $v$ such that

$$
s(v) \geq \delta+2 \operatorname{deg}(v)-n
$$

In particular, if $G$ has no pair of similar vertices then $\delta \leq(n+1) / 3$.

[^0]Proof. If every two nonadjacent vertices are similar then $G$ is a complete multipartite graph. Indeed $G$ is a complete bipartite graph, and the conclusion of the theorem holds for any vertex $v$ of minimum degree.

Otherwise there exist vertices $a$ and $b$ that are nonadjacent and dissimilar. Let $a$ and $b$ be such a pair for which the overlap $|N(a) \cap N(b)|$ is maximized. Since $a$ and $b$ are dissimilar, there is a vertex $x$ in $N(a)-N(b)$ say. Observe that $N(x) \cap N(b)$ is nonempty; otherwise the edge $x b$ may be added to $G$ without producing a triangle.

There are two cases:

1. There are vertices $y_{1}$ and $y_{2}$ in $N(x) \cap N(b)$ such that $y_{1}$ and $y_{2}$ are dissimilar. Since $G$ is triangle-free, the two sets $N(x) \cup N(b)$ and $N\left(y_{1}\right) \cup N\left(y_{2}\right)$ are disjoint. Likewise, the two sets $N(a) \cap N(b)$ and $N(x) \cap N(b)$ are disjoint. By our choice of the pair $\{a, b\}$ it holds that $\left|N\left(y_{1}\right) \cap N\left(y_{2}\right)\right| \leq|N(a) \cap N(b)|$. Hence

$$
\begin{aligned}
n & \geq|N(x) \cup N(b)|+\left|N\left(y_{1}\right) \cup N\left(y_{2}\right)\right| \\
& =\operatorname{deg}(x)+\operatorname{deg}(b)-|N(x) \cap N(b)|+\operatorname{deg}\left(y_{1}\right)+\operatorname{deg}\left(y_{2}\right)-\left|N\left(y_{1}\right) \cap N\left(y_{2}\right)\right| \\
& \geq \operatorname{deg}(x)+\operatorname{deg}\left(y_{1}\right)+\operatorname{deg}\left(y_{2}\right)+(\operatorname{deg}(b)-|N(x) \cap N(b)|-|N(a) \cap N(b)|) \\
& \geq \operatorname{deg}(x)+\operatorname{deg}\left(y_{1}\right)+\operatorname{deg}\left(y_{2}\right) .
\end{aligned}
$$

Thus $\delta \leq n / 3$, and the conclusion of the theorem holds for any vertex $v$ of minimum degree.
2. All the vertices in $N(x) \cap N(b)$ are similar. Let $y$ be a vertex in the set $Y=N(x) \cap N(b)$. Note that $s(y)=|Y|$, and that $y \notin N(a)$. We may assume that the vertices in $X=N(y) \cap N(a)$ are similar, otherwise we are back in Case 1. Note that $x \in X$.

Since $G$ is triangle-free, the two sets $N(x) \cup N(b)$ and $N(y)$ are disjoint. Thus

$$
n \geq \operatorname{deg}(x)+\operatorname{deg}(b)-|Y|+\operatorname{deg}(y)
$$

Similarly, $n \geq \operatorname{deg}(y)+\operatorname{deg}(a)-|X|+\operatorname{deg}(x)$. Addition of these two inequalities yields:

$$
s(x)+s(y)+2 n \geq 2 \operatorname{deg}(x)+2 \operatorname{deg}(y)+2 \delta
$$

Thus the statement of the theorem holds either for $v=x$ or for $v=y$. QED

If $G$ is an $r$-regular maximal triangle-free graph on $n$ vertices, then Theorem 1 shows there is a similarity class in $G$ of size at least $3 r-n$. This is sharp for a
number of graphs including: the complete bipartite graph $K(b, b)$; the expansion of the 5 -cycle $C_{5} \otimes K_{s}$ which has $5 s$ vertices, is $2 s$-regular and has similarity classes of size $s$; and the complement $\overline{C_{3 r-1}^{r-1}}$ of the $(r-1)$ st power of the cycle on $3 r-1$ vertices, which is $r$-regular and has no pair of similar vertices.

As a consequence of Theorem 1 we obtain another proof that the binding number at least $3 / 2$ guarantees the existence of a triangle. This result, along with Woodall's more general conjecture [3] that binding number at least $3 / 2$ guarantees cycles of all lengths, was first established by Shi [1, 2]. This proof is much simpler than Shi's proof of the triangle part of Woodall's conjecture.

Theorem 2 Let $G$ be a graph on $n$ vertices. If for every set $S$ of vertices it holds that $|N(S)| \geq \min (3|S| / 2, n)$, then $G$ has a triangle.

Proof. Let $G$ be triangle-free. We must find an $S$ with $|N(S)|<\min (3|S| / 2, n)$. Clearly we may assume that $G$ is maximal triangle-free.

We claim that there is a vertex $v$ for which $s(v) \geq 2 \operatorname{deg}(v)-2 n / 3$. If $\delta<n / 3$ this is obvious; if $\delta \geq n / 3$ then use Theorem 1 . So let $S$ denote the set of vertices not in $N(v)$. Then $|N(S)| \leq n-s(v)$. Further, $|S|=n-\operatorname{deg} v \geq 2 n / 3-s(v) / 2$. Thus $|N(S)| \leq n-s(v)<n-3 s(v) / 4 \leq 3|S| / 2$. QED

## References

[1] R. Shi, The binding number of a graph and its triangle, Acta Math. Appl. Sinica (English Series) 2 (1985), 79-86.
[2] R. Shi, The binding number of a graph and its pancyclism, Acta Math. Appl. Sinica (English Series) 3 (1987), 257-269.
[3] D. Woodall, The binding number of a graph and its Anderson number, J. Combin. Theory B 15 (1973), 225-255.


[^0]:    ${ }^{1}$ Research supported by NSF grant DMS 9108403 and NSA grant MDA 904-92-H-3029.

