A Note on Maximal Triangle-Free Graphs

Wayne Goddard, University of Pennsylvania Daniel J. Kleitman, Massachusetts Institute of Technology¹

Abstract

We show that a maximal triangle-free graph on n vertices with minimum degree δ contains an independent set of $3\delta - n$ vertices which have identical neighborhoods. This yields a simple proof that if the binding number of a graph is at least 3/2 then it has a triangle. This was conjectured originally by Woodall.

We consider finite undirected graphs on n vertices with minimum degree δ . A maximal triangle-free graph is one which does not contain the triangle K_3 but the addition of any edge would create a triangle. Equivalently, it is a triangle-free graph of diameter two. We say that two (nonadjacent) vertices of a graph are similar if they have the same neighborhoods. Similarity is obviously an equivalence relation. In this paper we show that in a maximal triangle-free graph there is a similarity class of size at least $3\delta - n$. As a consequence we obtain a short proof that if the binding number of a graph is at least 3/2 then the graph contains a triangle.

We denote the set of neighbors of a vertex x by N(x) and the degree of x by deg (x). For a set S of vertices, the neighborhood of S, denoted N(S), is given by the set of all vertices which are adjacent to a vertex in S (i.e. $\bigcup_{v \in S} N(v)$). Then the binding number of the graph is the minimum of |N(S)|/|S| taken over all nonempty sets S of vertices such that N(S) is not the whole graph. Further, we denote the number of vertices in the similarity class of vertex x by s(x).

Theorem 1 Let G be a maximal triangle-free graph on n vertices with minimum degree δ . Then there is a vertex v such that

$$s(v) \ge \delta + 2\deg(v) - n.$$

In particular, if G has no pair of similar vertices then $\delta \leq (n+1)/3$.

¹Research supported by NSF grant DMS 9108403 and NSA grant MDA 904-92-H-3029.

PROOF. If every two nonadjacent vertices are similar then G is a complete multipartite graph. Indeed G is a complete bipartite graph, and the conclusion of the theorem holds for any vertex v of minimum degree.

Otherwise there exist vertices a and b that are nonadjacent and dissimilar. Let a and b be such a pair for which the overlap $|N(a) \cap N(b)|$ is maximized. Since a and b are dissimilar, there is a vertex x in N(a) - N(b) say. Observe that $N(x) \cap N(b)$ is nonempty; otherwise the edge xb may be added to G without producing a triangle.

There are two cases:

1. There are vertices y_1 and y_2 in $N(x) \cap N(b)$ such that y_1 and y_2 are dissimilar. Since G is triangle-free, the two sets $N(x) \cup N(b)$ and $N(y_1) \cup N(y_2)$ are disjoint. Likewise, the two sets $N(a) \cap N(b)$ and $N(x) \cap N(b)$ are disjoint. By our choice of the pair $\{a, b\}$ it holds that $|N(y_1) \cap N(y_2)| \leq |N(a) \cap N(b)|$. Hence

$$n \geq |N(x) \cup N(b)| + |N(y_1) \cup N(y_2)|$$

= deg (x) + deg (b) - |N(x) \cap N(b)| + deg (y_1) + deg (y_2) - |N(y_1) \cap N(y_2)
> deg (x) + deg (y_1) + deg (y_2) + (deg (b) - |N(x) \cap N(b)| - |N(a) \cap N(b)|)
> deg (x) + deg (y_1) + deg (y_2)

$$\geq \operatorname{deg}(x) + \operatorname{deg}(y_1) + \operatorname{deg}(y_2).$$

Thus $\delta \leq n/3$, and the conclusion of the theorem holds for any vertex v of minimum degree.

2. All the vertices in $N(x) \cap N(b)$ are similar. Let y be a vertex in the set $Y = N(x) \cap N(b)$. Note that s(y) = |Y|, and that $y \notin N(a)$. We may assume that the vertices in $X = N(y) \cap N(a)$ are similar, otherwise we are back in Case 1. Note that $x \in X$.

Since G is triangle-free, the two sets $N(x) \cup N(b)$ and N(y) are disjoint. Thus

$$n \ge \deg(x) + \deg(b) - |Y| + \deg(y).$$

Similarly, $n \ge \deg(y) + \deg(a) - |X| + \deg(x)$. Addition of these two inequalities yields:

$$s(x) + s(y) + 2n \ge 2 \deg(x) + 2 \deg(y) + 2\delta.$$

Thus the statement of the theorem holds either for v = x or for v = y. QED

If G is an r-regular maximal triangle-free graph on n vertices, then Theorem 1 shows there is a similarity class in G of size at least 3r - n. This is sharp for a

number of graphs including: the complete bipartite graph K(b, b); the expansion of the 5-cycle $C_5 \otimes K_s$ which has 5s vertices, is 2s-regular and has similarity classes of size s; and the complement $\overline{C_{3r-1}^{r-1}}$ of the (r-1)st power of the cycle on 3r-1 vertices, which is r-regular and has no pair of similar vertices.

As a consequence of Theorem 1 we obtain another proof that the binding number at least 3/2 guarantees the existence of a triangle. This result, along with Woodall's more general conjecture [3] that binding number at least 3/2 guarantees cycles of all lengths, was first established by Shi [1, 2]. This proof is much simpler than Shi's proof of the triangle part of Woodall's conjecture.

Theorem 2 Let G be a graph on n vertices. If for every set S of vertices it holds that $|N(S)| \ge \min(3|S|/2, n)$, then G has a triangle.

PROOF. Let G be triangle-free. We must find an S with $|N(S)| < \min(3|S|/2, n)$. Clearly we may assume that G is maximal triangle-free.

We claim that there is a vertex v for which $s(v) \ge 2 \deg(v) - 2n/3$. If $\delta < n/3$ this is obvious; if $\delta \ge n/3$ then use Theorem 1. So let S denote the set of vertices not in N(v). Then $|N(S)| \le n - s(v)$. Further, $|S| = n - \deg v \ge 2n/3 - s(v)/2$. Thus $|N(S)| \le n - s(v) < n - 3s(v)/4 \le 3|S|/2$. QED

References

- R. Shi, The binding number of a graph and its triangle, Acta Math. Appl. Sinica (English Series) 2 (1985), 79–86.
- [2] R. Shi, The binding number of a graph and its pancyclism, Acta Math. Appl. Sinica (English Series) 3 (1987), 257–269.
- [3] D. Woodall, The binding number of a graph and its Anderson number, J. Combin. Theory B 15 (1973), 225–255.