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A NOTE ON METRIC-FINE SPACES

ZDENEK FROLIK

ABSTRACT.   The coreflection into metric-fine spaces X is explicitly

described, and it is shown that metric-fine proximally fine spaces are

just the spaces X such that /: X —• Y is uniformly continuous whenever

the pre-images under /of zero sets are zero sets.

Basic properties of metric-fine and (separable metric)-fine spaces are

derived, and the corresponding coreflections are described using apparently

a new concept of a complete projective family with respect to a class of

spaces.   In conclusion the uniform spaces determined by cozero sets are

identified as metric-fine proximally fine spaces.

The notion of metric-fine spaces (introduced by A. Hager [l]) seems to

be very useful in the theory of uniform spaces.   If we add to metric-fine some

property we usually get a very interesting notion.   One example is given in

this note.   More examples are given in subsequent papers; e.g., measurable

uniform spaces are just hereditarily metric-fine spaces (see Frolik [3]).

Let F be a coreflection of a category U, and let X be a class of objects

of the category Ct.   A A - F  object is an object A such that any morphism of

A into an object K in A. factorizes (uniquely) through the coreflection FK —►

K.   By a theorem of J. vilimovsky [l], the class of all a - F  objects is co-

reflective provided that Cl fulfils the natural conditions.

This note concerns the category of uniform spaces.   In general we use

the terminology and notation of E. Cech [l].

Following Isbell [1], denote by a the usual fine coreflection, and denote

by e the usual reflection onto separable uniform space.   Thus aX is the

underlying set X of X endowed with the (uniformly finest) uniformity topolog-

ically equivalent to  X, and eX is X endowed with the uniformity which has

all countable uniform covers of X for a basis of uniform covers.

-
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In accordance with the general definition, a uniform space will be called

metric-fine (or (separable metric)-fine) if for every uniformly continuous map-

ping / of X into a metric (or separable metric, resp.) space M the mapping

/: X —> a/M  is uniformly continuous.   By Vilimovsky [l] the categories of

metric-fine and (separable metric )-fine spaces are coreflective.

In this note the coreflections are explicitly described, and as a byprod-

uct the coreflectivity is obtained.   The following lemma will be used just

for ß = a.

Definition.  Let A be an object of a category u, and let a be a class of

spaces.   A projective family \f : A —> A   ! is called Jv-complete if for every

morphism f: A —» K, K e Jv, there exists an a, and a g: A    —> K such that

/ ■ g */-«

Lemma.  Assume that Jv is a class of metric spaces which is closed

under countable products and subspaces, and let ß be a coreflection of

uniform spaces such that ßM —> M are identities.

Let X be a uniform space, and let Y be projectively generated by all

mappings f: Y —> ßM where f: X —» M  is uniformly continuous, M £ Jv.   Then

the family \f: Y—> ßM\ is si-complete.

Proof.   If a space  Y is projectively generated by a family of mappings

\f : Y —> Y  i, then, by definition, the pre-images of uniform covers of Y  's

under 7  's form a subbasis for the uniform covers of Y.   Then each uniform
; a

cover of Y is realized (is refined by the pre-image of a uniform cover) by the

reduced product / of a finite family \faW e A\> f: Y —> lit Ya\a e A\, and

hence each countable collection of uniform covers of Y is realized by such

an / with A countable.

Now let h be a uniformly continuous mapping of Y onto an S £ Jv.   Take

an / as above such that the pre-image (under h) of each 1/rz-cover is realized

bv 7.   We have   Y    = ßM  , M   £ Jv, and   7  : X —* M    are uniformly continuous.
1 ' a      '     a      a a a

Let Al be the subspace f[x] of the product of \Mj.   Then /: X —> M is uni-

formly continuous, and f: Y —» ßM is one of the generating maps for Y.

Since ß is a coreflection, the identity mapping of ßM in the product of

{ßM  ! is uniformly continuous, and hence /: Y —> ßM realizes the pre-image

of each uniform cover of S under h, and hence there is a uniformly continuous

mapping g: ßM —* S such that h = g ° f.   This concludes the proof.

If X is a uniform space we denote by cozX the collection consisting of

the cozero sets of uniformly continuous real valued functions on X.   Obvi-

ously, cozX is closed under the operations of taking finite intersections and
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countable unions.   If /: X —> Y is uniformly continuous then the pre-images

of cozero sets are cozero sets.

The complements of cozero sets are the zero sets; and the collection

of all zero sets is denoted by zX.

For the proof of Theorem 1 we need the following simple observation:

If X is a uniform space then completely coz X-additive uniform covers

form a basis for the uniform covers of X.

Theorem 1.  For each uniform space X let tt2v X  be the uniform space
N0

protectively generated by the identity mapping onto X, and by all f: mv X—»
K0

clM where f runs over all uniformly continuous mappings into separable

metric spaces M.   Then:

(1) The uniform space Y projectively generated by all the f: Y —> a/M

has for a basis of uniform covers the countable covers by cozero sets in X.

(2) 772    X has for a basis of uniform covers the covers of the form
0

{V    C\ B   \n £ N, a £ A\ where {B  I ranges in coz X, and {V \  is a uniform
an'' n ° ' a '

cover of X (which may be assumed to be completely coz X-additive).

(3) y=era„  X = m,. eX.

(4) // X is separable then mv X  has countable covers ranging in coz X
0

for the basis of uniform covers.

(5) The family {f: m» X —> clM] with f being uniformly continuous map-
K0

pings of X onto separable metrizable spaces, is separable metric-complete.

(6) 772      772      X =  722      X.
X0     K0 K0

(7) ?22    X is a coreflection of X in (separable metric)-fine spaces.
K0

Theorem 2.   The following three properties of a space X are equivalent:

(1) X is (separable metric)-fine.

(2) // / is a mapping of X into a separable metric space Y such that the

pre-images of cozero sets are cozero sets, then f is uniformly continuous.

(3) Condition (2) with "metric" deleted.

Proof of Theorem 1. (1) We may and shall assume that eX = X.   Then we

may apply Lemma 1 to obtain that every uniform cover of Y is realized by

one of the mappings f: Y —> clM where M is a separable metrizable space.

Hence the pre-images of open countable covers of M's form a basis for uni-

form covers of y.   Since the pre-images of the open sets in M's are cozero

sets in X, it remains to show that every countable cover ranging in coz X is

uniform (in y).   Let Iß   i  be any countable cover ranging in coz X.   Choose
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uniformly continuous functions   7    such that B     is the cozero set
' ' 7Z n

\x\fnx fk 0!.   Let / be the reduced product of \f \, and let  M = f[x] C RN.

The map f: X —> M is uniformly continuous, B    = f~   [f ÍB  ]], and  /[ß   ]  is

an open cover of  M, hence a uniform cover of d.M.   This concludes the proof

of (1).

(2) By (1) the covers described in (2) form a subbasis for the uniform

covers of m    X.   It is routine to show that any two of them have a common
No

star-refinement, and hence the covers form a basis.

(3) It follows directly from the definition that Y = m„ eX, and that
K0

em„ X is finer than Y.   It remains to show that Y is finer than ez?z    X.   Thus
x0 K0

we must show that any countable uniform cover \WA of m    X  is refined by
0

a countable cover \C   ! ranging in coz X.   By (2) \W  ! is refined by a cover

described in (2).   Put

c   =b   n\J\v \v   nß  cwj
nk n       v       a     a n k

= B  nLMy„ nß |v   nß   c w !.
n a n1    a n k

Clearlv ÍC   , !  is a countable cover of X, and it ranees in coz X if IV   ! is
1        nk ° a

completely coz X-additive.   This concludes  the proof.

(4) is a consequence of (2).

(5) follows from (1) and (3).

(6) follows from (5).

(7) It follows from (6) that z?z    X  is a (separable metric)-fine space.
0   .

Let / be a uniformly continuous mapping of a (separable metric Mine space

Z into X.   We must show that g: Z —» 772     X  is uniformly continuous.   So it
0

is enough to show that g: Z —► Y followed by each of the generating map-

pings for   Y = Z7Z    X  is uniformly continuous.   This is obvious for the identity
0

mapping of Y onto X, and if /: Y —> clM is any other generating mapping then

gf: X —> M is uniformly continuous, hence   / ° g: Z —> M is uniformly con-

tinuous, hence  f ° g: Z —> aM is uniformly continuous because Z is (separ-

able metricHine.   This concludes the proof.

Proof of Theorem 2.  Conditions (1) and (2) are equivalent by Theorem 1.

Obviously (3) implies (2).   Every separable uniform space is projectively

generated by mappings into separable metric spaces, and hence (2) implies

(3).
In the next theorem the basic facts about metric-fine spaces are given.

We use the theorem of A. H. Stone [l] which says that every open cover of

a metric space has a a-uniformly discrete open refinement.
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Theorem 3.   For each uniform space X let mX be the uniform space pro-

jectively generated by the family of all mappings f: mX —► clM where f is a

uniformly continuous mapping of X onto a metric space M.   Then

(1) {/: 772X —► a.M\ is a me trie-complete family.

(2) mX is a coreflection of X in the category of metric-fine spaces.

(3) mX has for a basis of uniform covers the covers of the form iß   O U"\
• 11 ' ' n a'

n £ N,   a   £ A   i   where   {ll",\a e A\ are uniform covers of X and {B  \ ranges
n q_l ' ' 72 °

¿72 coz X.   /t2 addition we may assume that the cover is completely coz X-

additive.

(A) mX has for a basis of uniform covers the covers in (3) with the addi-

tional property: {B    n U"\a £ A\   is uniformly discrete in X.

(5)   COZ  X = COZ   772      X = COZ  772X.

Theorem 4.   For any space  X: emX = em    X = m    eX.
K0 No

Proof.  Clearly emX is finer than e772    X, and the converse follows from
0

property (5) in Theorem 3, and description (A) (in view of (3)) in Theorem 1

of em    X.   Thus emX = e?72    X.   From the description of the covers in Theo-

rems 1 and 3 it follows that meX - m    eX.   By Theorem 1, em    X = 772    eX.
KfJ N0 Kg

Proof of Theorem 3.  Condition 1 follows frcVm the Lemma, clearly (1)

implies 772772X = 722X, and (3) follows from this and (1) by an argument similar

to that in the proof of Theorem 1.   Namely, one shows that 772X is metric-

fine, and if g: Z —> X  is uniformly continuous and Z is metric-fine, then

g: Z —> 722X followed by each generating /: 222X —> a/M is uniformly continu-

ous, hence  g: Z —> 772X  is uniformly continuous.

One gets the covers in (3) and (4) as the pre-images of covers from M's

under generating /: mX—> aM's  as follows:

If ii is any open cover of M, then by A. H. Stone's theorem there exists

a ff-uniformly discrete open refinement {V"\a £ A   , 72 £ N\ of U.   Put

Bn = r'[Cnl=U\U"a\a£AnL

Since  ÍV"|fl  £ A   \ is uniformly discrete in M, say with r > 0, the trace of

the 7-cover on C   refines {V"i, and hence  ÍV"|fl £ A\ is a trace of  C    of a
n a a' n

uniform cover of M.   Thus {Un\ is a trace on  ß     of a uniform cover of X (the
an

map /: X —» M  is uniformly continuous ).   Thus   { U" C\ B   \ has required prop-

erties and refines /"   [ll].

It remains to show that every cover in (3) is a uniform cover of ?72X.

I
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Realize all covers  1(7"! and all B    by a uniformly continuous mapping /: X—►

M, M metric.   Then the cover in (3) is refined by the pre-images of an open

cover of M.

To prove property (5) we shall show that every countable uniform cover

{WA of mX is refined by a countable cover \C \ ranging in coz X. We know

that \W, ! is refined by a cover in statement (3) in Theorem 3.   Put

C,    =U!^" HB   1(7" OB   C WA.
kn      w      a n'    a n k

It is easily seen that the cover \C,   ! ranees in coz X (because  \Un] are
* kn ° a

completely coz-additive), and refines \W, \.

Thus  emX = em    X by Theorem 1, and hence  coz mX = coz t?z?2X =
0

coz em    X = coz X  by application of Theorem 1.

Corollary.  A space X is metric-fine if and only if each o-uniformly dis-

crete completely coz-additive cover is uniform.   For any space X the o-

uniformly discrete completely coz-additive covers form a basis for the uni-

form covers of mX.

Proof.   The covers in Theorem 3, condition (4), are just a-uniformly

discrete completely coz-additive covers.

A coz-morphism of a uniform space X into a uniform space Y is a map-

ping /: X —> Y such that the pre-images of cozero sets in Y are cozero sets

in X.   Clearly every uniformly continuous mapping is a coz-morphism, and

the converse is not true.   By Theorem 2 every coz-morphism of a metric-fine

space into a separable uniform space is uniformly continuous.   We shall

describe all spaces X for which any coz-morphism /: X —> Y  is uniformly

continuous.

Recall that a uniform space X is called proximally fine if the uniformity

is the finest one (uniformly) compatible with the induced proximity.   Denote

by pX the precompact uniform space associated with X.   Clearly p is a re-

flection, and the finite uniform covers of X form a basis for uniform covers

of pX.

One can show immediately that a uniform space is proximally fine if

and only if for every uniformly continuous mapping / of X into pY where  Y

is metrizable, f: X —> Y is uniformly continuous.

By an (A.D.) Alexandrov space we mean a uniform space X such that

every bounded uniformly continuous coz-morphism into the real line is uni-

formly continuous.   We note that X is an Alexandrov space if and only if

every finite cozero cover of X is uniform.
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Theorem 5.   The following five properties of a uniform space X are

equivalent:

1. If f is a coz-morphism of X into a uniform space Y then f: X —* Y

is uniformly continuous.

2. Condition 1 with Y metrizable.

3. X is metric-fine and proximally fine.

4. X is (separable metric)-fine and proximally fine.

5. X is a proximally fine Alexandrov space.

Proof. Obviously (1) implies (2), and (3) implies (4). By Theorem 2,

condition (A) implies (5). We shall show that (2) implies (3), and (5) im-

plies (1).

First we need a simple observation.   Let / be a mapping of X into a

metric space y.   Then it is easily seen that if one of the mappings  /: X —*

y, /: X —> pY, f: X —> clY is a coz-morphism, then all three mappings are

coz-morphisms.

Assume condition (2), and let / be a mapping of X into a metrizable

uniform space y.   If /: X —> Y is uniformly continuous, then f: X —* Y is a

coz-morphism, hence /: X —► &Y is a coz-morphism, and by condition (2)

the mapping  /: X —► clY is uniformly continuous.   Hence X is metric-fine.

Now let /: X —► py be uniformly continuous.   Hence f: X —> pY is a coz-

morphism, hence f: X —► Y is a coz-morphism, and by condition (2), uni-

formly continuous.   This proves that X is proximally fine.

Assume condition (5), and let / be a coz-morphism of X into a space y.

Since X is an Alexandrov space, /: X —> pY is uniformly continuous by

definition because py is projectively generated by bounded functions, and

since X is proximally fine, /: X —» Y is uniformly continuous.   This con-

cludes the proof.

Definition. A uniform space X is said to be coz-fine if it satisfies the

equivalent conditions in Theorem 5.

Theorem 6.  A uniform space X is coz-fine if and only if ¡or every map-

ping f of X into a metrizable uniform space Y, if f: X —» py  is uniformly

continuous then f: X —* Q-Y is uniformly continuous.

Proof.  Theorem 5.

Theorem 7.   The category of coz-fine spaces is coreflective.

Proof.   It is enough to show that if a space X is inductively generated

by a family of mappings  f  • X    —> X with X  's coz-fine then X is coz-fine.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Let /: X —► pY be uniformly continuous with Y metrizable.   Hence all

/ ° / : X    —> pY are uniformly continuous, by Theorem 6 all the mappings

f ° f : X   —> clY are uniformly continuous, and since  \f \  is an inductively

generating family, /: X —> olY  is uniformly continuous.

Remark.   It is obvious that if F and G are two functors on uniform

spaces, which preserve the underlying set, and if Jv is a class of spaces,

and if if is the class of all spaces X such that uniform continuity of f: X —►

FK, K £ Jv, implies the uniform continuity of /: X—> GK, then (l is coreflec-

tive.   Certainly, one can get more general results from the proof of Theorem 7.

An explicit description of the coreflection will be given in a subsequent

paper on locally fine uniform spaces.   We need the results of this note in a

paper on measurable spaces.

In conclusion we show by a simple example that a coz-fine space need

not be fine.

Let D be an uncountable set, and let % be the a-algebra on D which

consists of all countable subsets of D and their complements.   Let X be the

set D endowed with the uniformity having all completely J5-additive partitions

(such partitions must be countable!) for a basis of uniform covers.   It is

obvious that X is topologically discrete.   On the other hand we shall show

that if / is a coz-morphism of X onto a metric space Y, then {/"   [(y)]|y £ Y\

is a uniform cover of X, and hence  /: X —» Z  is uniformly continuous when

Z is the set Y given the finest uniformity.   Hence X is coz-fine.

First observe that Y is a separable metric space: if \U  !  is a disjoint

family of open sets in Y, then  \f~   [lj ]\ is a completely 55-additive disjoint

family in X, and hence it is countable.

Let (7 be the union of all open sets V in Y such that /""   [v] is count-

able.   Since U is a cozero set, the set X = f~   [U~\ must be countable.   The

complement of ¡7 is nonvoid, and it contains at most one point.   Hence   Y — U

is a singleton (z).   Hence  \f~  (y)\y £ YÎ is a uniform cover of X.

Remark.  The Borel sets on the real line, in general, Baire sets in any

analytic topological space (in particular, any compact space) gives coz-fine

uniformity.   One must know that completely additive partitions are countable

(and this is not easy).   This follows from the main result in Frolik [4].

Theorem 5 is a refinement of results in Frolik [l].   The results of this

note were included in the author's lecture at the Second International Topo-

logical Symposium on Topology in Budva, August 1972.

In conclusion it is my pleasant duty to note that M. Rice obtained the

main part of Theorem 3 in his dissertation (Wesleyan University, 1973),   and

A. Hager found a part of Theorem 5.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



METRIC-FINE SPACES 119

REFERENCES

E. Cech

1.  Topological spaces, 2nd ed., Publ. House Czech. Acad. Sei., Prague, 1966;

English transi., Wiley, New York, 1966.    MR 35 #2254.

Z. Frohk

1. Topological methods in measure theory and measurable spaces (Proc. Third

Prague Sympos., 1971), Academia, Prague, 1972.

2. Interplay of measurable and uniform spaces, Proc. Second Internat. Sympos.

on Topology and Appl., Budva, 1972.

3- Measurable uniform spaces, Pacific J. Math, (to appear).

4. A measurable map with analytic domain and metrizable range in quotient,

Bull. Amer. Math. Soc. 76 (1970), 1112-1117.     MR 42 #448.

A. Hager

1. Some nearly fine uniform spaces, Proc. London Math. Soc. (to appear).

2. Measurable uniform spaces, Fund. Math. 77 (1972), 51—73.

J. Isbell

1. Uniform spaces, Math. Surveys, no. 12, Amer. Math. Soc, Providence, R. I.,

1964.    MR 30 #561.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PITTSBURGH, PITTSBURGH,

PENNSYLVANIA 15213

MUKU,SOKOLOVSKA 83, PRAGUE, CZECHOSLOVAKIA

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


