A NOTE ON MINIMAL SUBMANIFOLDS WITH M-INDEX 2

By Takehiro Itoh

In [1], \overline{O} tsuki gave some examples of minimal submanifolds with *M*-index 2 and geodesic codimension 3 in Euclidean spaces, spheres and hyperbolic non-Euclidean spaces, where the dimension of submanifolds is not less than 3 and the submanifolds satisfy the following conditions:

- (1) principal asymptotic vector field $P \neq 0$,
- (2) subprincipal asymptotic vector field Q=0,
- (3) ψ_v is of rank 1,
- (a) $\tilde{\omega} \neq 0$ and $\sigma = \mu/\lambda$ is constant on W^2 ,
- (β) W^2 is of constant curvature.

In this paper, the author replace (1) with (1)' P=0 and prove that there are no minimal submanifolds with *M*-index 2 such that the dimension of submanifolds is not less than 3 and they satisfy the above conditions: (1)', (2), (3), (α), (β). Moreover, in case of two dimension he will give an example of minimal surface with *M*-index 2 and geodesic codimension 3 in a sphere. This example is nothing but one that in the case the ambiant spaces are spheres in [1] we set p=0 and n=2 formally and solve the differential equation. In this paper, we use the notations and equations in [1].

§1. Minimal submanifolds with *M*-index 2, P=0, Q=0 and ϕ_v of rank 1.

Since P=0 and Q=0, on B, we have

(1.1)
$$\omega_{ar}=0$$
, where $a=1, 2$ and $r=3, \dots, n$.

From (1.1) we get $0 = d\omega_{ar} = -\bar{c}\omega_a \wedge \omega_r$, hence we get

(1.2) $\bar{c}=0.$

Then the equations in Lemmas 6 and 11 in [1] are written as follows

(1.3)
$$\{d \log \lambda - i(2\omega_{12} - \sigma \tilde{\omega})\} \wedge (\omega_1 + i\omega_2) = 0,$$

(1.4)
$$\{d\sigma + i(1-\sigma^2)\tilde{\omega}\} \wedge (\omega_1 + i\omega_2) = 0,$$

(1.5) $d\omega_{12} = (\lambda^2 + \mu^2)\omega_1 \wedge \omega_2,$

Received August 10, 1970.

(1. 6)
$$d\tilde{\omega} = -\frac{1}{\lambda\mu} (2\lambda^2\mu^2 - f^2 - g^2)\omega_1 \wedge \omega_2,$$

(1.7)
$$\begin{cases} d \log (f-ig) - d \log \lambda - i\omega_{12} \wedge (\omega_1 + i\omega_2) \\ -\frac{i}{f-ig} \tilde{\omega} \wedge \left\{ f\left(\left(2\sigma - \frac{1}{\sigma}\right)\omega_1 + \frac{i}{\sigma}\omega_2\right) - ig\left(\frac{1}{\sigma}\omega_1 + i\left(2\sigma - \frac{1}{\sigma}\right)\omega_2\right) \right\} = 0. \end{cases}$$

From (α) and (1.4) we get $\sigma^2 = 1$, i.e. $\sigma = 1$ or -1. We may suppose $\sigma = 1$, then from (β) and (1.5) we get

$$(1.8) c = -2\lambda^2,$$

which is a negative constant. Since λ is constant on W^2 from (1.8), we have $\tilde{\omega}=2\omega_{12}$ from (1.3). Then, from (1.6), we get

$$f^2 + g^2 = 2\lambda^2(\lambda^2 - c) = 6\lambda^4.$$

Hence we may put $f+ig=\sqrt{6} \lambda^2 e^{i\varphi}$ on W^2 . Using the relations above and (1.7), we have $\omega_{12}=-(1/3)d\varphi$, and hence we get c=0, which contradicts to (1.8). Thus there is no minimal submanifold with *M*-index 2, whose dimension is not less than 3, satisfing the conditions $(1)', (2), \dots, (\beta)$.

§ 2. Minimal surfaces with *M*-index 2 and ϕ_v of rank 1.

In this section, we discuss a minimal surface M^2 with *M*-index 2 and ϕ_v of rank 1 in a Riemannian manifold $M^{2+\nu}$ with constant curvature \bar{c} . Using the notations in [1] for our case, we can choose a frame $b \in B_1$ such that

(2.1)
$$\begin{cases} \omega_{13} = \lambda \omega_1, & \omega_{23} = -\lambda \omega_2, & \omega_{ia} = 0, \quad i = 1, 2, \\ \omega_{14} = \mu \omega_2, & \omega_{24} = \mu^{m_1}, \quad \lambda \neq 0, \quad \mu \neq 0, \quad 3 \leq \alpha \leq 2 + \nu. \end{cases}$$

Since ϕ_v is of rank 1, we can choose a frame $b \in B_1$ such that $F = fe_5$ and $G = ge_5$, $f^2 + g^2 \neq 0$. Let B_2 be the set of such $b \in B_1$ satisfing (2.1). Then, using (2.1) and the structure equations, we get

(2. 2)
$$\begin{aligned} \lambda \omega_{35} = f \omega_1 + g \omega_2, \qquad \omega_{3\gamma} = 0, \\ \mu \omega_{45} = g \omega_1 - f \omega_2, \qquad \omega_{4\gamma} = 0, \qquad 5 < \gamma. \end{aligned}$$

Analogously to Theorem 1 in [1], we can verify that the geodesic codimension becomes 3. On B_2 , we have the equations

(2.3)
$$\{d \log \lambda - i(2\omega_{12} - \sigma\tilde{\omega})\} \wedge (\omega_1 + i\omega_2) = 0,$$

(2. 4)
$$\{d\sigma + i(1-\sigma^2)\tilde{\omega}\} \wedge (\omega_1 + i\omega_2) = 0,$$

(2.5)
$$d\omega_{12} = -(\tilde{c} - \lambda^2 - \mu^2)\omega_1 \wedge \omega_2,$$

205

TAKEHIRO ITOH

(2. 6)
$$d\tilde{\omega} = -\frac{1}{\lambda\mu} (2\lambda^2\mu^2 - f^2 - g^2)\omega_1 \wedge \omega_2,$$

(2.7) $\begin{cases} d \log (f-ig) - d \log \lambda - i\omega_{12} \} \wedge (\omega_1 + i\omega_2) \\ - \frac{i}{f-ig} \, \tilde{\omega} \wedge \left\{ f\left(\left(2\sigma - \frac{1}{\sigma}\right)\omega_1 + \frac{i}{\sigma}\omega_2\right) - ig\left(\frac{1}{\sigma}\omega_1 + i\left(2\sigma - \frac{1}{\sigma}\right)\omega_2\right) \right\} = 0, \end{cases}$

where $\tilde{\omega} = \omega_{34}$ and $\sigma = \mu/\lambda$.

Now, we suppose that

- (a) $\tilde{\omega} \neq 0$ and $\sigma = \text{constant on } M^2$,
- (β) M^2 is of constant curvature c.

Then we have $\sigma^2 = 1$, $\tilde{\omega} = 2\omega_{12}$, c = 0 and $2\lambda^2 = \bar{c}$. Hence we may suppose that $\sigma = 1$ and $\omega_{12} = d\theta$, then we get

$$(2.8) \qquad \qquad \tilde{\omega} = 2d\theta$$

(2.9)
$$dx = \Re((e_1^* + ie_2^*)d\bar{z}),$$

(2.10)
$$\overline{D}(e_1^* + ie_2^*) = \lambda(e_3^* + ie_4^*) d\bar{z},$$

(2.11)
$$\overline{D}(e_3^* + ie_4^*) = -(e_1^* + ie_2^*)\lambda dz + \sqrt{2}\,\lambda e_5 d\bar{z},$$

(2.12)
$$\overline{D}e_5 = -\sqrt{2} \lambda \Re((e_3^* + ie_4^*)dz),$$

where $e_1^* + ie_2^* = e^{i\theta}(e_1 + ie_2)$, $e_3^* + ie_4^* = e^{2i\theta}(e_3 + ie_4)$ and z is an isothermal coordinate of M^2 such that $\omega_1 + i\omega_2 = e^{-i\theta}dz$. Since \bar{c} is positive constant, we may suppose $\bar{c}=1$, i.e. $\bar{M}^5 = S^5$ (unit sphere). Then we have that $\lambda^2 = 1/2$. When $\lambda = 1/\sqrt{2}$, considering as $S^5 \subset E^6$, we get the Frenet formulas:

(2.13)
$$\begin{cases} dx = \Re(e_1^* + ie_2^*)d\bar{z}, \\ d(e_1^* + ie_2^*) = \frac{1}{\sqrt{2}}(e_3^* + ie_4^*)d\bar{z} - e_6dz, \\ d(e_3^* + ie_4^*) = -\frac{1}{\sqrt{2}}(e_1^* + ie_2^*)dz + e_5d\bar{z} \\ de_5 = -\Re((e_3^* + ie_4^*)dz). \end{cases}$$

These formulas are nothing but ones when formally we put p=0 and n=2 in the case $\overline{M}^{n+3}=S^{n+3}$ in [1]. Analogously to the case $\overline{M}^{n+3}=E^{n+3}$ in [1], we can give a solution of (2.13) as follows

206

$$x = A_{1} \exp \frac{i(u_{1} + \sqrt{3} u_{2})}{\sqrt{2}} + \bar{A}_{1} \exp \frac{-i(u_{1} + \sqrt{3} u_{2})}{\sqrt{2}} + A_{2} \exp \sqrt{2} i u_{1}$$
(2. 14)

$$+ \bar{A}_{2} \exp (-\sqrt{2} i u_{1}) + A_{3} \exp \frac{i(u_{1} - \sqrt{3} u_{2})}{\sqrt{2}} + \bar{A}_{3} \exp \frac{-i(u_{1} - \sqrt{3} u_{2})}{\sqrt{2}},$$

where $z=u_1+iu_2$ and A_1 , A_2 , and A_3 are fixed vectors in C^3 satisfing

$$A_i A_j = A_i \bar{A}_k = 0,$$
 $\sum_{j=1}^3 A_j \bar{A}_j = \frac{1}{2}$ and $A_j \bar{A}_j = \frac{1}{6},$ $(i, j, k = 1, 2, 3, i \neq k).$

References

 [1] ŌTSUKI, T., On minimal submanifolds with *M*-index 2. To appear in J. of Diff. Geometry.

> DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY.