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In many cases rational surfaces obtained by desingularization of birational dynamical systems are not relatively

minimal. We propose a method to obtain coordinates of relatively minimal rational surfaces by using blowing

down structure. We apply this method to the study of various integrable or linearizable mappings, including

discrete versions of reduced Nahm equations.
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1. Introduction

Studies of (possibly non-autonomous) discrete integrable dynamical systems started with discovery

of singularity confinement method [7], which imposes conditions on the singularities of solutions,

and many discrete analogues of Painlevé equations were found through this method. In [14] Sakai,

noting Okamoto’s earlier work on continuous case [10], showed that all the continuous or discrete

Painlevé equations are classified in terms of so called generalized Halphen surfaces, where the

condition for the dimension of the linear system of the anti-canonical divisor is relaxed to be not

necessarily one. In these studies surfaces depend on parameters including the independent variable,

and each surface is called the space of initial conditions. In discrete case, the dynamical system is

lifted to a sequence of isomorphisms between surfaces.

On the other hand, in [3] Diller and Favre showed that for any birational automophism ϕ on a

projective smooth rational surface S, we can construct a rational surface S̃ by successive blow-ups

from S such that (i) σ ◦ ϕ̃ = ϕ ◦σ , where σ denotes the successive blow-downs σ : S̃→ S, (ii)

ϕ̃ = ϕ on S in generic, and (iii) ϕ̃ : S̃→ S̃ is analytically stable. In general, ϕ̃ is said to be lifted

from ϕ if the condition (i) and (ii) are satisfied and a birational automorphism ϕ on S is said to be

analytically stable if the condition ((ϕ)∗)n = ((ϕ)n)∗ holds on the Picard group on S. The notion of

analytical stability is closely related to the singularity confinement. Indeed, this notion is equivalent

to the condition that there is no curve C on S and a positive integer k such that ϕ(C) is a point on S

and ϕk(C) is an indeterminate point of ϕ , i.e. analytical stability demands that singularities are not
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recovered by the dynamical system. In other words, if a mapping ϕ satisfies singularity confinement

criterion, i.e. for any curve such that ϕ(C) is a point, ϕk+1(C) recovers to a curve again for some

positive integer k, then if we blow up the phase space at ϕ i(C) for 1 ≤ i ≤ k, then the singularity

would be relaxed and resolved by successive applications of this procedure. Finally we would obtain

a surface where the lifted birational automorphism ϕ̃ is analytically stable.

From Diller and Favre’s work, such birational automorphisms f are classified as follows: Let f

be a bimeromorphic automophism of a Kähler surface with the maximum eigenvalue of f ∗ is one.

Up to bimeromorphic conjugacy, exactly one of the following holds.

• The sequence ||( f n)∗|| is bounded, and f n is an automorphism isotopic to the identity for

some n, where || · || denotes the Euclidean norm w.r.t. some basis of the Picard group.

• The sequence ||( f n)∗|| grows linearly, and f preserves a rational fibration. In this case, f can

not be conjugated to an automorphism. (we say f is linearizable or linearizable in cascade

in this case [12, 17]).

• The sequence ||( f n)∗|| grows quadratically, and f is an automorphism preserving an elliptic

fibration.

Though in this paper we consider mainly autonomous case, the procedure constructing analyti-

cally stable mapping can be applied also for non-autonomous case such as linearizable mappings or

discrete Painlevé equations. In this case, we start from a sequence of birational mappings ϕi : S→ S

and blow up successively at confined singular points whose positions depend on i. Then, ϕi would be

lifted to a sequence of birational mappings ϕ̃i : S̃i→ S̃i+1 such that (i) σi+1 ◦ ϕ̃i = ϕi ◦σi, (ii) ϕ̃i = ϕi

on S in generic, and (iii) {ϕ̃ : S̃i→ S̃i+1}i∈Z is analytically stable, i.e. ϕ∗i ◦· · ·◦ϕ∗i+n =(ϕi+n◦· · ·◦ϕi)
∗

holds on the Picard group on S̃i+n+1 for any i and non-negative integer n (see [15–17] about com-

putation and the relation to the degree growth).

In the study of integrable systems, we often want to find conserved quantities or linearize a given

integrable mappings, but the above construction of analytically stable mapping does not guarantees

that

(i) ϕ̃ is an automorphism.

(ii) S̃ is relatively minimal, i.e. there does not exists a blow-down of S̃, π : S̃→ S̃′ such that ϕ̃ ′ is

still analytically stable on S̃′.
In other words, the following possibilities remain.

(ia) A singularity sequence consists of infinite sequences of points to both sides and a finite sequence

of curves:

· · · → point→ point→ curves→ ·· · → curves→ point→ point→ ·· · ,

where the image of a curve C, parametrized as ( f (t),g(t)) on some coordinates, under ϕn is defined

as the Zariski closure of limε→0 ϕn( f (t)+ c1ε,g(t)+ c1ε) with generic t, c1 and c2.

(ib) A singularity sequence consists of an infinite sequence of points and that of curves to each side:

· · · → point→ point→ ·· · · · · → curves→ curves→ ·· · .

(ii)’ A finite set of exceptional curves are permuted.

Proposition 1.7 and Lemma 4.2 of [3] (cf. [6]) says that curves in (ia) can be blown down,

and that (ib) occurs only if f is not conjugate to an automorphism, i.e. if f is linearizable or has

a positive entropy. And if a curve in Case (ii)’ or Case (ib) is exceptional of the first kind, we can
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blow down them. Hence theoretically, we can obtain relatively minimal analytically stable surfaces

and compute the action on the Picard group. However, for investigating properties of the mapping

f such as conserved quantities, we need to know coordinate change explicitly.

Our aim in this paper is to develop a method to control blowing down structures on the level of

coordinates. We apply our method to various examples, including the newly studied discretization

of reduced Nahm equations [11]. In general, finding elliptic fibration for an elliptic surface is not

easy if the surface is not minimal, and we use information of singularity patterns of the dynamical

systems for finding unnecessary (−1) curves. Accordingly, this method of minimization shows

how an order-two mapping with complicated singularity structure can be brought to a simpler form

which enables computations of conserved quantities.

In the next section, we recall some basic notions and blowing down structures. In Section 3, we

investigate discrete versions of reduced Nahm equations, which preserve a rational elliptic fibration.

We will show that the associated surfaces are not minimal and by minimization one can transform

the mappings to simpler ones. In Section 4, we investigate linearizable dynamical systems, including

non-autonomous case.

2. Blowing down structure

2.1. Preliminaries

Notations: cf. [8, 9]

S : a smooth rational surface

D : the linear equivalent class of a divisor D

D ·D′ : the intersection number of divisors D and D′

O(D) : the invertible sheaf corresponding to D

Pic(S) = the group of isomorphism classes of invertible sheaves on S

≃ the group of linear equivalent classes of divisors on S

E : the total transform of divisor class of a line on P
2

Hx,Hy : the total transform of divisor class of a line x = constant

(or y = constant) on P
1×P

1

Ei : the total transform of the exceptional divisor class of the i-th blow-up

|D| ≃(H0(S,O(D))−{0})/C× : the linear system of D

KS : the canonical divisor of a surface S

g(C) : the genus of an irreducible curve C, given by the genus formula

g(C) = 1+ 1
2
(C2 +C ·KS) if C is smooth.

Blowing up: Let X be a smooth projective surface and let p be a point on X. There exist a

smooth projective surface X ′ and a morphism π : X ′→ X such that π−1(p)∼= P
1 and π represents a

biholomorphic mapping from X ′−π−1(p)→ X − (p). The morphism is called blowing down and

the correspondence π−1 is called blowing up of X at p as a rational mapping. For example if X is

the space C
2 and p is a point of coordinate (x0,y0) then we denote blowing up of X in p

X ′ = {(x− x0,y− y0;ζ0 : ζ1) ∈ C
2×P

1 |(x− x0)ζ0 = (y− y0)ζ1}
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by

π : (x,y)←− (x− x0,(y− y0)/(x− x0))∪ ((x− x0)/(y− y0),y− y0).

Total transform and proper transform: Let π : Y → X be the blow-down to a point p on X and

D be a divisor on X . The divisor π∗(D) on Y is called total transform of D and for any analytic

subvariety V on X the closure of π−1(V − p) in Y is called the proper transform of V .

Let X be a surface obtained by N times blowing up of P
2. Then the Picard group Pic(X) is

isomorphic to the Z-module (the Neron-Severi lattice):

Pic(X) = ZE ⊕
N
⊕

i=1

ZEi

and the intersection of two divisors on X are given by the following basic formulas (valid for any

i, j = 1, · · · ,N):

E
2 = 1, E

2
i =−1, E ·Ei = Ei ·E j = 0 (i 6= j).

The anti-canonical divisor class is

−KS = 3E −
N

∑
i=1

Ei.

In the case where X is a surface obtained by N times blowing up of P1×P
1, the Picard group

Pic(X) is

Pic(X) = ZHx⊕ZHy⊕
N
⊕

i=1

ZEi

and the intersection of divisors and the anti-canonical divisor are given by

Hx ·Hy = 1, E
2

i =−1, Ei ·E j = Ei ·Hx = Ei ·Hy = H
2

x = H
2

y = 0 (i 6= j),

−KS = 2Hx +2Hy−
N

∑
i=1

Ei.

A rational elliptic surface: A rational surface X is called a rational elliptic surface if there exists

a fibration given by the morphism: π : X → P
1 such that:

• for all but finitely many points k ∈ P
1 the fibre π−1(k) is an elliptic curve.

• π is not birational to the projection: E×P
1→ P

1 for any curve E.

If no fibers contain exceptional curves of the first kind, the surface is called minimal rational elliptic

surface. Minimality is equivalent to the condition that the rank of the Picard group is 10. In the

non-autonomous case, the role of minimal rational elliptic surfaces are replaced by “generalized

Halphen surfaces” [14].

Let S = Sm be a surface obtained by successive m times blowing up from P
2 (or any rational

surface) at indeterminate or extremal point of ϕ , i.e. the Jacobian ∂ (x̄, ȳ)/∂ (x,y) in some local coor-

dinates is zero, such that ϕ̃ on § is analytically stable. Let Fm be a curve on S with self-intersection
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−1 and Fm be the corresponding divisor class. Our strategy to write the blow-down Sm along Fm by

coordinates is as follows.

Take a divisor class F such that there exists a blowing down structure (this terminology is due

to [4]): S = Sm→ Sm−1→ Sm−2→ ·· · → S1→ P
2, where Sm→ Sm−1 is a blow-down along Fm and

each Si→ Si−1 is a blow-down along an irreducible curve, such that the divisor class of lines in P
2

is F . Let |F |= α0 f0 +α1 f1 +α2 f2 = 0. Then ( f0 : f1 : f2) gives P2 coordinates.

In order to find such F we note the following facts.

It is necessary for the existence of such a blow-down structure that there exists a set of divisor

classes F1, . . . ,Fm such that

F
2 = 1 F

2
i =−1, Fi ·F j = 0, F ·Fi = 0

for (1≤ i, j≤m), and further that (i) the genus of divisor F is zero; (ii) the linear system of F does

not have a fixed part in the sense of Zariski decomposition and its dimension is two.

If the linear system of F does not have fixed part, then by Bertini theorem, its generic divisor

is smooth and irreducible (this follows from the fact that two divisors defines a pencil by blowing

up at the unique intersection and P. 137 of [9]), and its genus is given by the formula

g = 1+
1

2
(F2 +F ·KS).

From this fact and Condition (ii), 1+ 1
2
(F2 +F ·KS) should be zero.

Example 2.1. If degree of F is less than 6, then F is given by one of the following forms.

E

2E −Ei1−Ei2−Ei3

3E −2Ei1−Ei2−Ei3−Ei4−Ei5

4E −2Ei1−2Ei2−2Ei3−Ei4−Ei5−Ei6

4E −3Ei1−Ei2−Ei3−Ei4−Ei5−Ei6−Ei7

5E −2Ei1−2Ei2−2Ei3−2Ei4−2Ei5−2Ei6

5E −3Ei1−2Ei2−2Ei3−2Ei4−Ei5−Ei6−Ei7

5E −4Ei1−Ei2−Ei3−Ei4−Ei5−Ei6−Ei7−Ei8−Ei9 ,

(2.1)

where i j’s are all distinct with each other. All the above F admit blow-down structure if the posi-

tions of blow-up points are generic. For example, for F = 2E − Ei1 − Ei2 − Ei3 , Fi’s are given

by

E −Ei−E j({i, j|i 6= j} ⊂ {i1, i2, i3}), E j( j 6= i1, i2, i3)

and for F = 3E −2Ei1−Ei2−Ei3−Ei4−Ei5 , Fi’s are given by

E −Ei1−E j( j ∈ {i2, . . . , i5}), 2E −Ei1−Ei2−Ei3−Ei4−Ei5 , E j( j 6= i1, . . . , i5).

If we want to blow down to P
1×P

1 instead of P2, our strategy becomes as follows.

Let Fm−1 be a curve on S with self-intersection−1 and Fm−1 be the corresponding divisor class.

Take a divisor class Hu and Hv such that there exists a blow-down structure: S= Sm−1→ Sm−2→→
·· · → S1→ P

1×P
1, where Sm−1→ Sm−2 is a blow-down along Fm−1 and each Si→ Si−1 is a blow-

down along an irreducible curve, such that the divisor class of lines u = const and v = const are
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Hu and Hv. Let |Hu|= α0 f0+α1 f1 = 0 and |Hv|= β0g0+β1g1 = 0. Then (u,v) = ( f0/ f1,g0/g1)

gives P1×P
1 coordinates.

In this case, it is necessary that there exits a set of divisor classes F1, . . . ,Fm−1 such that

H
2

u = H
2

v = 0,Hu ·Hv = 1, F
2
i =−1,

Fi ·F j = 0, Hu ·Fi = Hv ·Fi = 0

for (1 ≤ i 6= j ≤ m− 1), and further that (i) each genus of divisor H u or H v is zero; (ii) each

linear system of Hu or Hv does not have a fixed part and its dimension is one. Consequently,

1+ 1
2
(F2 +F ·KS) should be zero again.

Example 2.2. If S is obtained by successive blow-ups from P
2, and the sum of degree of Hu or Hv

is less than 6, then each Hu or Hv is given by F −Ek, where F is in the list (2.1).

If S is obtained by successive blow-ups from P
1×P

1, each Hu or Hv is given by

Hx

Hx +Hy−Ei1−Ei2

2Hx +Hy−Ei1−Ei2−Ei3−Ei4

2Hx +2Hy−2Ei1−Ei2−Ei3−Ei4−Ei5

3Hx +Hy−Ei1−Ei2−Ei3−Ei4−Ei5−Ei6

3Hx +2Hy−2Ei1−2Ei2−Ei3−Ei4−Ei5−Ei6

4Hx +Hy−Ei1−Ei2−Ei3−Ei4−Ei5−Ei6−Ei7−Ei8

(2.2)

and those with exchange of Hu and Hv. Not all, but many pairs of these divisor classes admit a

blow-down structure for generic blow-up points. For example, for Hu = Hx and Hu = Hx +Hy−
Ei1−Ei2 , Fi’s are given by

Hx−Ei1 , Hx−Ei2 E j( j 6= i1, i2)

and for Hu = Hx +Hy−Ei1−Ei2 and Hu = Hx +Hy−Ei1−Ei3 , Fi’s are given by

Hx−Ei1 , Hy−Ei1 , Hx +Hx−Ei1−Ei2−Ei3 , E j( j 6= i1, i2, i3).

Remark 2.1. There is another way to obtain relatively minimal surface for elliptic surface case,

though it needs heavy computation. Let S be a rational elliptic surface (not necessarily minimal)

where the mapping ϕ is lifted to an automorphism. Compute a R-divisor θ by

θ := lim
n→∞

ϕ̃n
∗ (E )

||ϕ̃n∗ (E )|| ,

where || · || denotes the Euclidian norm of a divisor w.r.t. a fixed basis, and let k > 0 be a minimum

number such that kθ ∈ Pic(S). Then, the linear system |mkθ | gives an elliptic fibration for some

integer m ≥ 1 (m is not always one, (cf. Step 1 of Appendix of [3] and the authors’ paper [1]). Let

C be a curve in the linear system |kθ | (such C exists [2]). By applying van Hoeji’s algorithm [19]

(cf. [20]), we obtain a birational transformation S→ S′,(x,y) 7→ (u,v) such that C is transformed into

Weierstrass normal form v2 = u3− g2u− g3. Since the degree of this curve is three, S′ is obtained

by 9 blow-ups from P
2. This implies S′ is a minimal elliptic surface (the fibration is given by the

linear system |−mKS′ |).
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Remark 2.2. If ϕ is an automorphism of a non-minimal rational elliptic surface, the invariant does

not corresponds to the anti-canonical divisor, because the self-intersection of the anti-canonical

divisor is negative in this case, while θ 2 of the above remark should be zero.

2.2. A simple example which needs blowing down

Let us show first a simple example which needs change of blow-down structure to obtain relatively

minimal surface. This example is due to Diller and Favre’s paper [3]: (for simplicity we note xn =

x, x̄ = xn+1,x = xn−1 and so forth)














x̄ = y+
1

2

ȳ =
x(2y−1)

2y+2

. (2.3)

This system can be lifted to an automorphism on a surface S by blowing up P
1×P

1 at the singularity

points of the dynamical systems:

E 1 : (x,y) = (1,0), E 2(1/2,−1/2), E 3(0,−1), E 4(−1/2,∞),

E 5(∞,−1/2), E 6(0,∞), E 7(∞,0), E 8(1/2,∞), E 9(∞,1/2).

Immediately one can see the action on the Picard group from the following singularity patterns:

H y−E 3→ E 4→ E 5→ E 6→ E 7→ E 8→ E 9→H x−E 1

H y−E 9→ E 1→ E 2→ E 3→H x−E 4

and also the invariant divisor classes H x+H y−E 1−E 2−E 3 and

H x+H y−E 4−E 5−E 6−E 7−E 8−E 9. The presence of invariant divisor calsses imposes mak-

ing blow-down along the curve which corresponds to the divisor class H x+H y−E 1−E 2−E 3

(it is the only one which has self-intersection -1, the other has self-intersection -3). Hence we take

the basis of blow-down structure as

H u = H x+H y−E 2−E 3,H v = H x+H y−E 1−E 2,

H x+H y−E 1−E 2−E 3,F 1 = H x−E 2, F 2 = H y−E 2,

F i = E i+1 (i = 3,4,5,6,7,8),

where the linear systems of H u and H v are given by

|H u | : u0(x− y−1)+u1(2xy+ x) = 0,

|H v | : v0(x− y−1)+ v1(2xy− y) = 0.

Using these, we take the following change of variables:

u =
2xy+ x

x− y−1
, v =

2xy− y

x− y−1
,

then our dynamical system (3) and (4) becomes










ū =
2uv−u− v−1

u−3v+1

v̄ =
−2uv

u+ v+1

. (2.4)
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This system has the following blow-up points:

F 1 : (u,v) = (−1,0), F 2(0,−1), F 3(1,2), F 4 : (u,(v+1)/u) = (0,1).

F 5(0,1), F 6(1,0), F 7 : ((u+1)/v,v) = (1,0), F 8(2,1).

and the linear system of the anti-canonical divisor gives the invariant

K =
uv(2uv−u− v−1)

(u− v)2−1
=

x(2x−1)y(2y−1)(2xy− x+ y+1)

(x− y−1)2

and the invariant two form

ω =
du∧dv

(u− v)2−1
=

dx∧dy

1− x+ y
.

3. Discrete Nahm equations

All the examples in this section preserve an elliptic fibration.

3.1. Discrete Nahm equations with tetrahedral symmetry

In [11], Petrera, Pfadler and Suris proposed the following discretization of the reduced Nahm equa-

tions with tetrahedral symmetry

{

x̄− x = ε(xx̄− yȳ)

ȳ− y = −ε(xȳ+ yx̄)
. (3.1)

Here ε is related to the step of discretization. The integrability can be proved by the existence of the

following conserved quantity and invariant two-form

K =
y(3x2− y2)

−1+ ε2(x2 + y2)
, ω =

dx∧dy

y(3x2− y2)
. (3.2)

In this case one can easily transform the system into a QRT one by the following variable transfor-

mation (about QRT mappings see [5, 13, 18])

u =
1− εx

y
,v =

1+ εx

y
. (3.3)

Immediately we get ū = v. From the equation (3.1) we get a QRT mapping

3ūu−u(ū+u)−u2 +4ε2 = 0

with the invariant:

K =
−3(u− v)2 +4ε2

2ε2(u+ v)(uv− ε2)
, ω =

du∧dv

3(u− v)2−4ε2
,

which are precisely (3.2) in the variables x and y.

Now we are going to study the singularity structure and its space of initial conditions and recover

the invariants. The fact that the conserved quantity is expressed by a ratio of a cubic polynomial

implies that we have better to start with P
2 than P

1×P
1.

On P
2 : (X : Y : Z) = (x : y : 1), we blow up the following points
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E 1(−1 :−
√

3 : 2ε), E 2(1 :
√

3 : 2ε), E 3(−1 :
√

3 : 2ε),

E 4(1 :−
√

3 : 2ε), E 5(1 : 0 : ε), E 6(−1 : 0 : ε),

E 7(1 : 0 : 0), E 8(1 : 1 : 0), E 9(1 :−1 : 0).

In order to blow down to P
1×P

1, we take the basis of blow-down structure H x, H y,

F 1, . . . ,F 8 as

H x = E −E 5, H y = E −E 6, F i = E i(i = 1,2,3,4),

F 5 = E 7, F 6 = E 8, F 7 = E 8, F 8 = E−E 5−E 7 .

The curves corresponding to the divisor classes H x and H y are:

α0(εX−Z)+α1Y = 0, β0(εX−Z)+β1Y = 0.

They give immediately the change of variable

u =
εx−1

y
, v =

εx+1

y
,

which is essentially (3.2) up to rescaling factors.

3.2. Discrete Nahm equations with octahedral symmetry:

The second Nahm equation is the one corresponding to octahedral symmetry. The system has the

following form

{

x̄− x = ε(2xx̄−12yȳ)

ȳ− y = −ε(3xȳ+3yx̄+4yȳ)
, (3.4)

which is again integrable by the invariants:

K =
y(2x+3y)(x− y)2

1−10ε2(x2 +4y2)+ ε4(9x4 +272x3y−352xy3 +696y4)

ω =
dx∧dy

y(x− y)(2x+3y)
. (3.5)

Inspired by the transformation (3.3) we can simplify the system by the following transformations:

x =
1

3
(χ−2y), x̄ =

1

3
(χ̄−2ȳ)

and u = (1− εχ)/y,v = (1+ εχ)/y. Finally we get a simpler equation but non-QRT type:

8ūu−2u(ū+u)+20ε(ū−u)−4u2 +400ε2 = 0,

which can be written as a system on P
1×P

1







ū = v

v̄ =
(u+2v−20ε)(v+10ε)

4u− v+10ε

. (3.6)
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The space of initial conditions is given by the P
1×P

1 blown up at the following nine points:

E 1 : (u,v) = (−10ε,0), E 2(0,10ε), E 3(10ε,5ε),

E 4(5ε,0), E 5(0,−5ε), E 6(−5ε,−10ε)

E 7(∞,∞), E 8 : (1/u,u/v) = (0,−1/2), E 9 : (1/u,u/v) = (0,−2).

The action on the Picard group is the following:

H̄ u = 2H u+H v−E 1−E 3−E 7−E 8, H̄ v = H u

Ē 1 = E 2, Ē 2 = H u−E 3, Ē 3 = E 4, Ē 4 = E 5, Ē 5 = E 6,

Ē 6 = H u−E 1, Ē 7 = H u−E 8, Ē 8 = E 9, Ē 9 = H u−E 7 .

From this action one can see immediately that we have three invariant divisor classes:

α0 = H u+H v−E 1−E 2−E 7, α1 = H u+H v−E 1−E 2−E 8−E 9,

α2 = E 7−E 8−E 9, α3 = H u+H v−E 3−E 4−E 5−E 6−E 7 .

The curve corresponding to α0 is a (-1) curve which must be blown down. Let H a =

H u+H v−E 2−E 7 and H b = H u+H v−E 1−E 7, then their linear systems are given by

a1u+a2(v−10ε) = 0, b1(u+10ε)+b2v = 0

and the basis of blow-down structure is given by

H a, H b, α0, F 1 = H u−E 7, F 2 = H v−E 7,

F 3 = E 3, F 4 = E 4, F 5 = E 5, F 6 = E 6, F 7 = E 8, F 8 = E 9 .

So if we set:

a =
v−10ε

u
b =

u+10ε

v
,

our dynamical system becomes










ā =
3ab−2a+2

a−4

b̄ =
4−a

2a+1

. (3.7)

This system has the following space of initial conditions which define a minimal rational elliptic

surface:

F 1 : (a,b) = (0,∞), F 2 : (a,b) = (∞,0),

F 3 : (a,b) = (−1/2,4), F 4 : (a,b) = (−2,∞)

F 5 : (a,b) = (∞,−2), F 6 : (a,b) = (4,−1/2),

F 7 : (a,b) = (−2,−1/2), F 8 : (a,b) = (−1/2,−2).

The invariants can be computed from the anti-canonical divisor as

K =
(ab−1)(ab+2a+2b−5)

4ab+2a+2b+1
, ω =

da∧db

(ab−1)(ab+2a+2b−5)

which are equivalent to the invariants (3.5).
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3.3. Discrete Nahm equations with icosahedral symmetry

The last example of discrete reduced Nahm equations refers to icosahedral symmetry. It is given by

{

x̄− x = ε(2xx̄− yȳ)

ȳ− y = −ε(5xȳ+5yx̄− yȳ)
(3.8)

and is integrable as well. However the invariants here are more complicated. They are reported also

by [11] asa

K =
y(3x− y)2(4x+ y)3

1+ ε2c2 + ε4c4 + ε6c6

, ω =
dx∧dy

y(3x− y)(4x+ y)
(3.9)

where

c2 =−7(5x2 + y2)

c4 = 7(37x4 +22x2y2−2xy3 +2y4)

c6 =−225x6 +3840x5y+80xy5−514x3y3−19x4y2−206x2y4.

Again we can make first the following change of variable

x =
1

5
(X +

y

2
), x̄ =

1

5
(X̄ +

ȳ

2
),

then we divide by yȳ both equations and call again a = X/y,b = 1/y,u = b− εa,v = b+ εa and

finally we get a simpler equation but non-QRT type:

6ūu−u(ū+u)− 7ε

2
(ū−u)−4u2 +49ε2 = 0.

We can apply our procedure to this last non-QRT mapping. However, here we demonstrate that

our procedure works well even for the original mapping.

The space of initial condition is given by the P
1×P

1 blown up at the following 12 points:

E 1 : (x,y) = (∞,∞), E 2(−1/7ε,−3/7ε), E 3(−1/7ε,4/7ε),

E 4(1/7ε,3/7ε), E 5(1/7ε,−4/7ε) E 6(1/5ε,0),

E 7(1/3ε,0), E 8(1/ε,0), E 9(−1/ε,0),

E 10(−1/3ε,0), E 11(−1/5ε,0),E 12 : (1/x,x/y) = (0,1/3).

On this surface the dynamical system is neither an automorphism nor analytically stable due to

the following topological singularity patterns:

H y−E 1 (y = ∞)→ point→ ·· · (4 points) · · · → point→H y−E 1

· · · → point→ point→H x−E 1 (x = ∞)→ point→ point→ ·· · ,

where the image of a curve under ϕn is defined as (ia) in Section 1. Moreover, the curve 4x+y = 0 :

H x+H y−E 1−E 3−E 5 is invariant. We blow down along these three curves with the blow-down

aa sign in c2 was corrected by information from the authors of that paper
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structure

H u = H x+H y−E 1−E 3, H v = H x+H y−E 1−E 5,

H x−E 1, H y−E 1, H x+H y−E 1−E 3−E 5,

F 1 = E 12, F 2 = E 2, F 3 = E 4, F 4 = E 6,

F 5 = E 7, F 6 = E 8, F 7 = E 9, F 8 = E 10, F 9 = E 11,

where the linear systems of H v and H v are given by

|H u | :u0(1+7εx)+u1(4x+ y)

|H v | :v0(1−7εx)+ v1(4x+ y).

If we take the new variables u and v as

v =
2(1+7εx)

ε(4x+ y)
, v =

2(1−7εx)

ε(4x+ y)
,

then we have

F 1 : (u,v) = (2,−2),F 2 : (0,−4),F 3 : (4,0),F 4 : (6,−1),F 5 : (5,−2),

F 6 : (4,−3),F 7 : (3,−4),F 8 : (2,−5),F 9 : (1,−6).

The dynamical system becomes an automorphism having the following topological singularity pat-

terns

H v−F 9→F 2→F 1→F 3→H u−F 4

H v−F 3→F 4→F 5→F 6→F 7→F 8→F 9→H u−F 2

and H u → H u+H v−F 2−F 4. Hence we find the

invariant (−1) curve H u+H v−F 1−F 2−F 3, which should be blown down. Again we take

the blow-down structure as

H s = H u+H v−F 1−F 2, H t = H u+H v−F 1−F 3,

H u+H v−F 1−F 2−F 3, F
′
1 = H a−F 1, F

′
2 = H b−F 1

F
′
3 = F 4, F

′
4 = F 5, F

′
5 = F 6, F

′
6 = F 7,

F
′
7 = F 8, F

′
8 = F 9,

where the linear systems of H s and H t are given by

|H s | :s0u(v+2)+ s1(u− v−4)

|H t | :t0v(u−2)+ t1(u− v−4)

and hence we take the new variables s and t as

s =− 3u(v+2)

2(u− v−4)
, t =− 3v(u−2)

2(u− v−4)
.

Then we have

F
′
1 : (s, t) = (3,0), F

′
2(0,3), F

′
3(−3,2), F

′
4 : (

s

t−3
,d−3) = (5,0),

F
′
5(2,3), F

′
6(3,2), F

′
7 : (u−3,

t

s−3
) = (0,5), F

′
8(2,−3)
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and











s̄ =
2st−3s−3t +9

s+ t−3

t̄ =
2(s−3)(t +3)

3s− t−9

.

The invariants can be computed by using the the anticanonical divisor as

K′ =
(s− t)2 +4(s+ t)−21

(s−2)(t−2)(2st−5s−5t +15)
=
−56ε6y(−3x+ y)2(4x+ y)3

d1d2d3

(3.10)

and

ω =
2εds∧dt

(s− t)2 +4(s+ t)−21
=

dx∧dy

y(3x− y)(4x+ y)
, (3.11)

where

d1 =−3−12εx+15ε2x2−3εy−17ε2xy+4ε2y2

d2 =−3+12εx+15ε2x2 +3εy−17ε2xy+4ε2y2

d3 =−3+27ε2x2 +10ε2xy+10ε2y2.

The denominator of K′ is related to K of (3.9) as

d1d2d3 = 160ε6(numerator of K)−27(denominator of K).

4. Linerizable mappings

In this section we demonstrate that our method works well also for linearizable mappings. The first

example is a simple non-autonomous linearizable mapping studied in [17]. We show our method

is different from that paper and [3]. The second example is also a linearizable mapping proposed

again by [11] as a discretization of the Suslov system.

4.1. A non-autonomous linearizable mapping

Here we consider the following very simple mapping

{

x̄ = y

ȳ =
(

− y
x
+an

)

y
, (4.1)

where an is an arbitrary sequence of complex numbers. This dynamical system is a linearizable

mapping studied in [17] and the degree of this dynamical system grows linearly and it is lifted to an
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analytically stable mapping by blowing up at the following points:

E 1 : (x,y) = (0,0), E 2 : (∞,∞).

The topological singularity patterns are

(
x

y
,y) = (0,0)→H x−E 1→H y−E 2→ (

1

x
,
x

y
) = (0,0)

(point on E 2)→H x−E 2→ (curve)

(curve)→H y−E 1→ (point on E 2).

These are not confined at all. Moreover, we can compute the action on the Picard group as

H̄ x = 2H x+H y−E 1−E 2

H̄ y = H x, Ē 1 = H x, Ē 2 = H x .

However, since the dynamical system is not an isomorphism, we need to compute very carefully for

this result. One can see detail of such computation in [17].

In this paper, we shall linearize the dynamical system with using singularity patterns instead of

the action on the Picard group.

From the singularity pattern, we can blow down the surface along H x−E 1, keeping analytical

stability. Then we can easily find a basis of blow-down structure as

H u = H x, H v = H x+H y−E 1−E 2, F 1 = H x−E 1, F 2 = H x−E 2 .

where the linear systems of H u and H v are

|H u | : u0x+u1 = 0, |H v | : v0x+ v1y = 0.

Taking new variables u and v as u = x and v = y/x, we have

{

ū = uv

v̄ = v+an
. (4.2)

4.2. Discrete Suslov system

The discrete Suslov system proposed in [11] is a linearizable mapping:

{

x̄− x = εa(x̄y+ xȳ)

ȳ− y = −2εxx̄
. (4.3)

Again, the degree of this dynamical system grows linearly and it is lifted to an analytically stable

mapping by blowing up at the following points: (we put a =−b2 for simplicity)

E 1 : (x,y) =

(

− 1

bε
,

1

b2ε

)

, E 2 :

(

1

bε
,

1

b2ε

)

,

E 3 :

(

− 1

bε
,− 1

b2ε

)

, E 4 :

(

1

bε
,− 1

b2ε

)

, E 5 : (∞,∞).
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The topological singularity patterns are

x = ∞→ (0,− 1

b2ε
)

y = ∞→ y = ∞

(2bex+b2εy+1 = 0)→ E 3→ E 2→ (2bεx−b2εy+1 = 0)

(−2bεx+b2εy+1 = 0)→ E 4→ E 1→ (−2bεx−b2εy+1 = 0)

(2b2ε2x2−b2εy−1 = 0)→ E 5→ (2b2ε2x2 +b2εy−1 = 0),

where divisor classes are

x = ∞ : H x−E 5

x = ∞ : H y−E 5

2bεx−b2εy+1 = 0 : H x+H y−E 4−E 5

−2bεx−b2εy+1 = 0 : H x+H y−E 3−E 5

2b2ε2x2 +b2εy−1 = 0 : 2H x+H y−E 3−E 4−E 5 .

At first, we blow down along H x−E 5 and H y−E 5. For that purpose we take the blow-down

structure as

H s := H x+H y−E 1−E 5, H t := H x+H y−E 2−E 5,

H x−E 5, H y−E 5, H x+H y−E 1−E 2−E 5, E 3, E 4 .

Then we have a surface whose Picard group is generated by H s, H t , E 3, E 4 where the dynami-

cal system is still analytically stable. We abbreviate detail, but again we find effective (-1) divisor

classes H s−E 3 and H s−E 4 in singularity pattern which can be blown down preserving analyti-

cal stability. Hence we take a basis of blow-down structure as

H u := H s+H t−E 3−E 4 = 2H x+2H y−E 1−E 2−E 3−E 4−2E 5,

u0(x
2−b2y2)+u1(1−b2ε2x2) = 0,

H v := H s = H x+H y−E 1−E 5 : v0(1+bεx)+ v1(x+by) = 0

H s−E 3 = H x+H y−E 1−E 3−E 5

H s−E 4 = H x+H y−E 1−E 4−E 5 .

If we take the new variables u and v as

u =
x2−b2y2

1−b2ε2x2
, v =

1+bεx

x+by
,

then the dynamical system becomes







ū = u

v̄ =
bε + v

1−bεuv

. (4.4)
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Remark 4.1. The action of the mapping on the Picard group on the first surface is given by

H̄ x = 2H x+H y−E 3−E 4−E 5

H̄ y = 2H x+2H y−E 3−E 4−2E 5

Ē 1 = 2H x+H y−E 3−E 5

Ē 2 = 2H x+H y−E 4−E 5

Ē 3 = E 2, Ē 4 = E 1

Ē 5 = 2H x+H y−E 3−E 4−E 5

and H u is the invariant divisor class whose self-intersection is zero.
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