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Abstract

We revisit the minimum-variance theory proposed by Harris and Wolpert (1998

Nature 394 780–4), discuss the implications of the theory on modelling the

firing patterns of single neurons and analytically find the optimal control signals,

trajectories and velocities. Under the rate coding assumption, input control

signals employed in the minimum-variance theory should be Fitts processes

rather than Poisson processes. Only if information is coded by interspike

intervals, Poisson processes are in agreement with the inputs employed in

the minimum-variance theory. For the integrate-and-fire model with Fitts

process inputs, interspike intervals of efferent spike trains are very irregular.

We introduce diffusion approximations to approximate neural models with

renewal process inputs and present theoretical results on calculating moments

of interspike intervals of the integrate-and-fire model. Results in Feng, et al

(2002 J. Phys. A: Math. Gen. 35 7287–304) are generalized. In conclusion,

we present a complete picture on the minimum-variance theory ranging from

input control signals, to model outputs, and to its implications on modelling

firing patterns of single neurons.

PACS numbers: 87.19.La, 02.30.Yy, 02.50.Ey

1. Introduction

In [9] Harris and Wolpert proposed the minimum-variance theory, which attempts to reveal

the fundamental principles possibly underpinning the saccadic eye movements and arm

movements. Some assumptions of their model are not clear. In particular it is not clear

whether the control (input) signal is neuronal firing rates (i.e. the number of spikes emitted

by a neuron per second) or firing intervals. In [9], figure 1, the authors compared inputs in

their model with the neuronal firing rates measured from biological experiments, indicating

that the input signals are neuronal firing rates. It is further pointed out in [15] that ‘To a first
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approximation, the variance in the firing rate of a neuron is proportional to its rate; in the cortex

of the brain, the ratio of the variance to the rate is close to 1’. It seems to further conclude that

the input signals used in the minimum-variance theory are firing rates of a Poisson process.

On the other hand, in [9] all results are based upon numerical simulations. It is not easy

to assess how the model behaviour depends on various model parameters. Essentially the

minimum-variance theory is a control problem [11], but an analytical solution of the optimal

control signal in the theory is yet to be provided.

Here we aim at answering all the aforementioned questions.

• Is the input signal used in the minimum-variance theory a Poisson process, as seemingly

confirmed both in [9, 15], or some other type of stochastic processes?

• What is the implication of their modelling work on modelling firing patterns of single

neurons?

• What are the optimal control signal, trajectory and velocity?

We point out that under the rate coding assumption, the input signal used in the minimum-

variance theory is a renewal process but not a Poisson process. It is a special renewal process.

In particular, if the interspike intervals are Gamma distributed, the input process is the so-

called Fitts process (see below for an exact definition). For the Fitts process, the coefficient

of variation of the firing rate is one and is independent of its mean firing rate. For a Poisson

process, the coefficient of variation of firing rate tends to zero when the mean firing rate

tends to infinity. Only if we assume that each interspike interval is used as the input control

signal, then the input used in the minimum-variance theory is the Poisson process. This, of

course, poses a constraint on the applicability of the theory since it is traditionally accepted

that information is carried by the firing rate of an approximately Poisson process (see, for

example, [10] for experimental data, and [15]).

We then discuss the consequence of their model assumption [9] on modelling the evolution

of the membrane potential of single neurons. Single neuron models with stochastic inputs

have been extensively studied during the past decades (see, for example, [5, 16] and references

therein). Much as many informative results have been obtained on models with Poisson

process inputs, we consider neuronal models with the Fitts process inputs and find that, no

matter whether the neuron receives a purely excitatory input or a balanced excitatory and

inhibitory input, the output spike trains are very irregular, with a coefficient of variation of

interspike intervals greater than 0.5. Therefore, the control signal used in the minimum-

variance theory is more irregular than that of a Poisson process. Theoretically we describe a

way to use diffusion process inputs to approximate renewal process inputs, which then enables

us to find a rigorous result to calculate the mean interspike intervals of the integrate-and-fire

model with Fitts process or more general renewal process inputs.

The optimal control signal is analytically found in [6] for α > 1/2, the super-Poisson

case4. As an application of results in [6], we calculate the optimal trajectories and velocities

for the one-dimensional case. This paper generalizes results in [6] to the case for 0 � α < 1/2.

In summary we complete our study of the task that started at [6]: exploring the nature

of input signals, finding optimal control signals and calculating trajectories and velocities for

α > 0. As a consequence, we also investigate single neuronal activity with a renewal process

inputs. This is the first step of our efforts to integrate a neuronal activity model (input signal)

with a motor control model (control signal). With the help of advances on modelling neurons

[7], and robotic controls [12], we expect in the near future to be able to build an integrated

neuronal robot.

4 See sections 2 and 3 for the introduction of α.
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2. Minimum-variance theory models

The state-update equation in [9] is defined by

xt+1 = Axt + C(ut + wt ) (1)

where xt is a vector identifying the position of the eye, A,C are appropriate matrices and ut is

the input signal, wt is noise satisfying 〈wt 〉 = 0 and
〈

w2
t

〉

= u2α
t (see [9] where only α = 1 is

considered). For simplicity of notation we rewrite equation (1) above in the continuous time

form

dxt = (A − I )xt dt + C
(

ut dt + uα
t dBt

)

(2)

where Bt is the standard Brownian motion. The problem solved in the minimum-variance

theory is connected with the neural control of the movement. The neural signal has a

deterministic and stochastic part. Suppose that xt is the solution of equation (2). We

intend to find a control signal ut such that the variance of xt is minimized in time interval

[S, S + R], i.e.

min
u

∫ S+R

S

var(xt ) dt

where R > 0 and

〈xS〉 = D (3)

with D being the desired position of the movement. The constraint equation (3) can be replaced

by

〈xt 〉 = D t ∈ [S, S + R] (4)

and all conclusions proved in [6] are true with slight modifications. The control problem

defined above is called post-movement control and is considered in [9]. Before analysing the

results on the control signal we want to first discuss what is the appropriate form of the input

signal and so in section 2 below we consider α = 1 first, and in section 4 we turn our attention

to finding out the optimal control signal depending on α. When α �= 1, equation (2) is no

longer a linear model.

3. Neuronal models

In this section, we investigate the control signals in the minimum-variance theory, its

implications on modelling firing patterns of single neurons and some theoretical results of

estimating the mean interspike intervals with renewal process inputs are presented.

3.1. The Integrate-and-fire model

Suppose that a cell receives excitatory postsynaptic potentials (EPSPs) at NE excitatory

synapses and inhibitory postsynaptic potentials (IPSPs) at NI inhibitory synapses. As long as

the membrane potential Zt is below the threshold Vthre, it is given by

dZt = −
1

γ
(Zt − Vrest) dt + a

NE
∑

i=1

dEi(t) − b

NI
∑

j=1

dIj (t) (5)

where Vrest is the resting potential, 1/γ is the decay rate, Ei(t), Ii(t) are point processes and

a, b are magnitudes of each EPSP and IPSP [5]. Once Zt crosses Vthre from below a spike is

generated and Zt is reset to Vrest. This model is termed the (leaky) integrate-and-fire model.
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For the facilitation of theoretical treatment, we further assume that NE(t) =
∑NE

i=1 Ei(t) and

N I (t) =
∑NI

j=1 Ij (t) are renewal processes. Let tEi denote the ith inter-EPSP interval, and t Ii
the ith inter-IPSP interval. As in the literature we denote

{

1
/〈

t Ii
〉

= r
/〈

tEi
〉

1
/〈(

t Ii −
〈

t Ii
〉)2〉 = r

/〈(

tEi −
〈

tEi
〉)2〉

with r ∈ [0, 1], the rate ratio between inhibitory and excitatory inputs and 〈·〉 being the

expectation. Hence when r = 0 there are no inhibitory inputs and when r = 1 inhibitory and

excitatory inputs are exactly balanced.

According to a basic result for the renewal process ([3], p 372), we have

1
√

t

(

NE(t) − t
/〈

tEi
〉)

→ Nor
(

0,
〈(

tEi −
〈

tEi
〉)2〉/(〈

tEi
〉)3)

(6)

in distribution where Nor(µ̄, σ̄ 2) represents the normal distribution with mean µ̄ and variance

σ̄ 2. Hence the process NE(t) can be approximated by5

dNE(t) =
1

〈

tEi
〉 dt +

√

〈(

tEi −
〈

tEi
〉)2〉

(〈

tEi
〉)3/2

dBE
t

where BE
t is the standard Brownian motion. Similarly for IPSP inputs we have

dN I (t) =
r

〈

tEi
〉 dt +

√

r
〈(

tEi −
〈

tEi
〉)2〉

(〈

tEi
〉)3/2

dBI
t

where BI
t is the standard Brownian motion, independent of BE

t .

From now on we assume that a = b, Vrest = 0 mV. Hence the diffusion approximation,

Vt , of the original jump (point) process Zt is given by

dVt = −
1

γ
Vt dt + dI (t) (7)

with a synaptic input dI (t) = µ dt + σ dBt , where






















µ = a
1 − r
〈

tEi
〉

σ 2 = a2(1 + r)

〈(

tEi −
〈

tEi
〉)2〉

(〈

tEi
〉)3

(8)

and Bt is the standard Brownian motion. The interspike interval of efferent spikes (the firing

time) is

T = inf{t : Vt � Vthre}.

Therefore we arrive at the first conclusion: for the membrane potential defined by

equation (5), i.e. the integrate-and-fire model with renewal process inputs, its diffusion

approximation is given by equation (7).

Later on we want to check the accuracy of the diffusion approximation. This has been

extensively investigated for Poisson process inputs. It is, however, not clear for general renewal

process inputs. To carry out numerical simulations, we further confine ourselves to the case

that inter-EPSP and inter-IPSP are distributed according to Gamma distributions.

5 It is worth pointing out (see [8], theorem 5 in p 366) that NE(t) is Markovian if and only if NE(t) is Poissonian.
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A Gamma distribution with positive parameters (β, ν) is defined by its density

fβ,ν(t) =
1

Ŵ(ν)
βν tν−1 exp(−βt)

with mean
〈

tEi
〉

= ν/β

and variance
〈(

tEi −
〈

tEi
〉)2〉 = ν/β2

i.e. the coefficient of variation CVR(I ) of interspike interval T (defined by the standard

deviation of T divided by the mean value of T) is

CVR(I ) =
1

√
ν
.

The diffusion approximation now takes the following form:

dVt = −
Vt

γ
dt + a

β

ν
(1 − r) dt + a

√
1 + r

√
β

ν
dBt .

Let λ = β/ν, we then have

dVt = −
Vt

γ
+ aλ(1 − r) dt + a

√
1 + r

√
λ

√
ν

dBt . (9)

When ν = 1, the renewal process input is exactly a Poisson process with the coefficient

of variation (CV(R)) of firing rates, i.e. standard deviation of NE(1)/mean of NE(1) (see

equation (6) which is true provided that
〈

tEi
〉

is small enough).

CVP (R) =
1

√
λ

and the CV of interspike intervals (ISIs)

CVP (I ) = 1.

3.2. Fitts process versus Poisson process (table 1)

The input of the integrate-and-fire model is identical to the input used in the minimum-variance

theory (see equation (2)) if
(

√
β

ν

)2 =
(

β

ν

)2
i.e. β = 1. The corresponding renewal process is

that with interspike interval density

f1,ν(t) =
1

Ŵ(ν)
tν−1 exp(−t)

with mean ν and CV of firing rates being equal to 1, and a CV of ISIs of 1/
√

ν. Equation (9)

takes the form (λ = 1/ν)

dVt = −
Vt

γ
+ aλ(1 − r) dt + a

√
1 + rλ dBt . (10)

Hence the renewal process with f1,ν as its interspike interval distribution has the property

that the faster the input, the larger the variability of interspike intervals. If the CV of ISIs of

spike trains is a measurement of the variability of input signals, the renewal process with f1,ν

fits well with the empirical Fitts law: the faster the movement (the stronger the input signals),

the greater the inaccuracy of the movement (the larger the CV of input ISIs). We therefore

introduce:
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Figure 1. A comparison of the histogram of Poisson process (right) and Fitts process (left) of ISIs

with λ = 0.1, 1 and 10.

Table 1. A comparison between Poisson process and Fitts process, λ = 1/ν.

Poisson Fitts

Input rate λ λ

CV of firing rates CVp(R) = 1√
λ

CVF (R) = 1

CV of ISIs CVp(I ) = 1 CVF (I ) =
√

λ

Definition 1. The renewal process with f1,ν as its interspike interval distributions is called

Fitts process.

A Fitts process is very different from a Poisson process. For the former, the faster the

neuron fires, the larger its variability. For the latter, its variability is totally independent of

firing rates. However, we see from figure 1 that when the input rate λ is large, the distribution

density fλ,1(t) is more similar to f1,ν(t) (truncated at a finite value) than that of small λ(λ < 1).

fλ,1(t) is always a monotonic function, whereas f1,ν(t) is not.

To assess the implication of Fitts process inputs on the output firing pattern of a neuronal

model such as the integrate-and-fire model, a few numerical comparisons are presented below.

As in the literature [5] we fix λ = β/ν = 10, a = b = 0.5, Vthre = 20, γ = 20 and Vrest = 0

in the following simulations.

Figure 2 shows that in general the diffusion approximation gives quite a good

approximation. An interesting phenomenon revealed by figure 2 is that the efferent spike

trains are very irregular when inputs are Fitts process, with a CV between 0.5 and 1. As we

have mentioned in previous publications [5], there are many ways to generate efferent spike

trains of the integrate-and-fire model with a CV between 0.5 and 1, a question hotly debated

in the past few years [4].

3.3. Moments of efferent interspike intervals

We first introduce some general notation. Consider a diffusion process defined by

dXt = µ(Xt ) dt + σ(Xt ) dBt . (11)
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Figure 2. Mean and CV of interspike intervals of the integrate-and-fire model with Poisson process

and Fitts process inputs. The points marked + and X are obtained from point process inputs and

the lines are diffusion approximations. In general the diffusion approximations give rise to good

approximations.

Let us introduce the following quantities:














s(x) = exp
(

−
∫ x

0
2µ(y)

σ 2(y)
dy

)

m(x) =
1

s(x)σ 2(x)
=

exp
( ∫ x

0
2µ(z)

σ 2(z)
dz

)

σ 2(x)

(12)

where m is the speed density, s the scale function. We call a diffusion process positive

recurrent if
∫ ∞
−∞ m(x) dx < ∞, which is equivalent to 〈T 〉 < ∞, where T is the first exit time

of (−∞, Vthre]. For a positive-recurrent process, its stationary distribution density is given by

π(x) ∝ m(x).

The following conclusion can be found in [5]:

Lemma 1. For a positive-recurrent diffusion process Xt we have

〈T 〉 = 2

∫ Vthre

Vrest

s(u) du

∫ Vrest

−∞
m(u) du + 2

∫ Vthre

Vrest

(∫ Vthre

y

s(u) du

)

m(y) dy (13)

= 2

∫ Vthre

Vrest

(∫ y

−∞
m(u) du

)

s(y) dy. (14)

For the model with Fitts process inputs, we thus have

〈T 〉 =
2

L

∫ BF

AF

g(x) dx (15)

where g(x) = exp(x2)
∫ x

−∞ exp(−u2) du,

AF =
Vrest

√
L

aλ
√

(1 + r)
−

(1 − r)
√

L(1 + r)
BF =

Vthre

√
L

aλ
√

(1 + r)
−

(1 − r)
√

L(1 + r)

and L = 1/γ .

For Poisson process inputs we have [5]

〈T 〉 =
2

L

∫ BP

AP

g(x) dx
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with

AP =
Vrest

√
L

a
√

λ(1 + r)
−

√
λ(1 − r)

√
L(1 + r)

BP =
Vthre

√
L

a
√

λ(1 + r)
−

√
λ(1 − r)

√
L(1 + r)

.

In general we have the following conclusions.

Theorem 1. For renewal process inputs we have

〈T 〉 =
2

L

∫
VthreL−µ

σ
√

L

VrestL−µ

σ
√

L

g(x) dx

where µ and σ are given by equation (8).

To the best of our knowledge, results as in theorem 1 have not been reported in the literature.

In terms of the theorem above, and Siegert’s expression for higher moments [14], we can find

the stationary state of a network of the integrate-and-fire models, which is actually a long

standing issue in computational neuroscience (see, for example, [1]). For example, for the

second moment, we have

var(T ) =
4

L2

∫
VthreL−µ

σ
√

L

VrestL−µ

σ
√

L

exp(x2)

{∫ x

−∞
exp(−u2)g2(u) du

}

dx. (16)

We know that in general the output of the integrate-and-fire model is a renewal process, rather

than a Poisson process. For a renewal process, from equation (6), we conclude that it is

fully determined by its mean and variance of interspike intervals. Therefore, we can obtain a

two-dimensional dynamical system of mean and variance and find the stationary solution of

the following dynamical system:

(µn+1, σn+1) = F(µn, σn)

where F is determined by Siegert’s expression, i.e. equation (16) and theorem 1, (µn, σn) is the

input mean and standard deviation and (µn+1, σn+1) is the output mean and standard deviation

(see, for example, [13] for related literature).

After clarifying the issue on input signals, now let us consider the optimal control signal

and output of the model of equation (2).

4. Optimal displacement and velocity

Now it is clear which input signals are used in the theory, let us turn our attention to the control

part of the theory, i.e. to the post-movement control explained in section 2. Let us consider

the constraint on the average position

〈xS〉 = D (17)

with D being the desired position of the movement. Equation (17) can be replaced by

〈xt 〉 = D t ∈ [S, S + R] (18)

and all conclusions proved in [6] are true with slight modifications. The similar control

problem is called post-movement control and is considered in [9]. We have also proposed

another form of control: during-movement control, i.e. to minimize the variance of xt in the

time interval [S−R, S] for 0 � R � S. We have theoretically found the optimal signals u∗
t for

a given α > 1/2 for the variance defined in theorem 1 [6]. However, many related issues have

not been discussed such as the implication of different model parameters on the behaviour
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of the model, the corresponding velocity etc. Here, as an application of results developed in

[6], we first explore these issues. In [6], we are only able to analytically find out the optimal

control signal for α > 1/2. Here we generalize the results to α > 0.

4.1. Post movement

To proceed, we first cite some results [6]. The optimal control signal is (in the one-dimensional

case, and C = 1)

u∗
t =











D
S

exp[−σ̃ (S − t)] if α = 1

Dσ̃
(

1 − 1
2α−1

)

exp
[

σ̃ S
(

1 − 1
2α−1

)]

− 1
exp

[

− σ̃
2α−1

(S − t)
]

otherwise and α > 1/2
(19)

for t ∈ [0, S] and ut = 0 for t ∈ [S, S + R], and σ̃ = A − 1.

From equations (19) and (2), we conclude that the optimal average displacement is

〈xt 〉 =
∫ t

0

exp(σ̃ (t − s))u∗
s ds

=



















D
[

exp
(

1
2α−1

σ̃ t
)

− exp(σ̃ t)
]

exp
(

σ̃ S
2α−1

)

− exp(σ̃ S)
if α �= 1 and α > 1/2

Dt exp(σ̃ t)

S exp(σ̃ S)
if α = 1

(20)

the average velocity is given by

〈vt 〉 =
(∫ t

0

exp(σ̃ (t − s))u∗
s ds

)′

=



















D
[

σ̃
2α−1

exp
(

1
2α−1

σ̃ t
)

− σ̃ exp(σ̃ t)
]

exp
(

σ̃ S
2α−1

)

− exp(σ̃ S)
if α �= 1 and α > 1/2

D[exp(σ̃ t) + σ̃ t exp(σ̃ t)]

S exp(σ̃ S)
if α = 1.

(21)

From figure 3, we see that when σ̃ > 0, the trajectory 〈xt 〉 simply increases to approach

its target (D = 1). As a consequence the speed is also simply an increasing function with

respect to time. Nevertheless, when σ̃ < 0, the trajectory could exhibit the overshooting

phenomena. For example, when α = 1.4, the trajectory will first approach 1.5 and then

come back to 1. One might wonder where the overshooting comes from. Recall that for the

dynamics we consider here, the requirement is that at time S, the trajectory stops at D and

the variance is minimized. Therefore, we have not excluded the possibility of overshooting.

Hence if the variance of the trajectory of returning to D is smaller, then the optimal path is

that of overshooting and returning. The overshooting is also observable for the velocity, we

see that in some cases it is negative.

4.2. During movement

In [6] we also proposed a new approach to tackle the problem. The idea is quite straightforward:

if the purpose of a movement of a biological system is to have a smooth trajectory, then a control

during the movement, rather than a control after movement as in the previous subsection, would

be more efficient. Therefore, we ask the question what happens if we intend to have a control
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Figure 3. Mean trajectory 〈xt 〉 (upper panel) and velocity (bottom panel) versus (t, α) with

D = 1, σ̃ = ±1 and S = 1.

of trajectory variances during [S − R, S], where 0 < R � S. It turns out that when R = 0,

i.e. the whole range control, the solution of the optimal control is degenerate [6]. Hence we

confine ourselves to the case of R > 0. Again when α = 1/2 (see below) the optimal control

signal is degenerate and so we first consider the case α > 1/2.

It is proved [6] that

u∗
s =

D

ã2α/(2α−1) + b̃2α/(2α−1)
ã1/(2α−1)

(

F(S − s)

U(s)

)1/(2α−1)

I[0,S−R]

+
D

ã2α/(2α−1) + b̃2α/(2α−1)
b̃1/(2α−1)

(

F(S − s)

V (s)

)1/(2α−1)

I[S−R,S] (22)

where
(

F(S − s)

U(s)

)1/(2α−1)

=
[

4σ̃ 2

1 − (2σ̃R + 1) exp(−2σ̃R))

]1/(2α−1)

exp[−σ̃ (S − s)/(2α − 1)]
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and

(

F(S − s)

V (s)

)1/(2α−1)

=
[

4σ̃ 2

1 − (2σ̃ s + 1) exp(−2σ̃ s)

]1/(2α−1)

exp[−σ̃ (S − s)/(2α − 1)]

with coefficients

ã =







































[

4σ̃ 2

1 − (2σ̃R + 1) exp(−2σ̃R)

]

1
(2α−1)

[

exp

(

2σ̃ S(α − 1)

2α − 1

)

− exp

(

2σ̃R(α − 1)

2α − 1

)]

2α − 1

2(α − 1)σ̃
if α �= 1

[

4σ̃ 2

1 − (2σ̃R + 1) exp(−2σ̃R)

]

(S − R) if α = 1

and

b̃ =























∫ S

S−R

[

4σ̃ 2

1 − (2σ̃ s + 1) exp(−2σ̃ s)

]1/(2α−1)

exp

(

2σ̃ (α − 1)(S − s)

2α − 1

)

ds if α �= 1

∫ S

S−R

[

4σ̃ 2

1 − (2σ̃ s + 1) exp(−2σ̃ s)

]

ds if α = 1.

In figure 4 we plot 〈xt 〉 versus t and d(〈xt 〉)/dt , i.e. the velocity versus t when the control

signal is u∗
t defined by equation (22). Comparing with results in the previous subsection, we

see that the overshooting is not observable for the cases we considered here.

It is interesting to see that with control, i.e. in time interval [0.5, 1], the velocity is much

more flat than the case of without control, i.e. in time interval [0, 0.5]. Furthermore, increasing

the control ranges, i.e. increasing R, will reduce the difference between trajectories for different

σ̃ , as plotted in figure 5.

Finally we point out that the velocity profiles in figures in section 4 are not symmetric

as reported in [9]. The basic reason is that we only impose the constraint equation (3) rather

than the hold-on constraint equation (18) and the model is one dimensional. With the hold-

on constraint equation (18) and in a high dimension, the symmetric velocity profiles will

automatically follow [4].

5. Optimal control signals

The optimal control signals for α > 1/2 are found in [6], here we consider the case of

0 < α � 1/2. We only consider the case of post-movement minimization (as in section 4).

Theorem 2. For α = 1/2, the optimal control signal u∗
t is unique and given by

u∗
t = c1δt (t

∗)

where t∗ is the point the function

∫ S+R

S

(S + R − t)‖F(t − s)‖2 dt s ∈ [0, S]

attains its minimum, δ is the delta function, F(t) = exp((A − I )t)C (see equation (2.2)) and

c1 is a constant so that the constraint equation (6.1) is satisfied.
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Figure 4. Mean trajectory 〈xt 〉 (upper panel) and velocity (bottom panel) versus (t, α) with

D = 1, σ̃ = ±1, R = 0.5 and S = 1.

For 0 < α < 1/2, the optimal control signal u∗
t is not unique and one class of the optimal

control signal could be

u∗
t = c1δt (s)

where s ∈ [0, S].

Before proving, we want to have a comparison with results in [6]. In [6], numerical

simulations are carried out for α = 1/2 to confirm that the control signal is degenerate.

Of course, we cannot assert whether the numerically founded optimal control signal is unique

or not. Theorem 2 tells us that the solution is unique, albeit it is degenerate. In the case

of 0 < α < 1/2, it is not known and in fact numerically it is impossible to find all the

optimal control signals since from theorem 2 we know that there are infinity optimal control

signals. Results in theorem 2 analytically confirm that the minimum-variance theory is only
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Figure 5. Mean trajectory 〈xt 〉 (upper panel) and velocity (bottom panel) versus (t, α) with

D = 1, σ̃ = ±1, R = 0.9 and S = 1. The differences between two trajectories are almost

indistinguishable.

applicable for the system with a super-Poisson input (α > 1/2), and is not suitable for a

Poisson (α = 1/2) and sub-Poisson (0 < α < 1/2) input.

Proof. From the proofs of theorem 2 in [6], we know that to minimize the variance of xt in

the time interval [S, S + R] is equivalent to minimizing

I (u) = 2

∫ S

0

H(s)|us |2α ds

for u ∈ L2α[0, S] where

H(s) =
∫ S+R

S

(S + R − t)‖F(t − s)‖2 dt.

When α > 1/2 the delta function is not in the space L2α[0, S], we can find properly

defined optimal control signal u∗, as in [6]. However, when α � 1/2, we see that the delta

function is in the space L2α[0, S].

In particular when α = 1/2, we have

min
u

I (u) = min
u

2

∫ S

0

H(s)|us |2α ds

= 2

∫ S

0

H(s)|u∗
s | ds

= 2H(t∗) > 0.

The uniqueness of the optimal control signal is easily seen.
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When 0 < α < 1/2, we note that

min
u

I (u) = min
u

2

∫ S

0

H(s)|us |2α ds

= 2

∫ S

0

H(s)|u∗
s | · |u∗

s |
2α−1 ds

= 0.

Since I (u) � 0, the control signals are optimal. �

6. Discussion

We considered the minimum-variance theory and discussed the implications of the theory on

modelling firing patterns of single neurons, and analytically found the optimal control signals.

It is found that the input signals used in the minimum-variance theory are Fitts processes rather

than Poisson processes. With Fitts process inputs, an integrate-and-fire model fires irregularly,

with a CV of interspike interval between 0.5 and 1 in the case we considered. In the framework

of post- and during-movement control, we also presented results of the optimal displacement

and velocity and analytically found optimal control signals for α > 0. We expect that our

results in this paper clarified the limit of the minimum-variance theory, which is currently a

widely spread theory.

One of the problems we encountered here is overshooting, as shown in the previous

section. We see that basically it is not appropriate to define a fixed time for a stochastic control

problem as discussed here. A more reasonable approach would be to introduce the first hitting

time

Sǫ = inf{t : xt ∈ Dǫ}
to replace S, where Dǫ = {x : d(x,D) � ǫ} with d as the Euclidean distance. The problem

we considered here is the open loop control problem in stochastic control theory [11]. In the

framework of the open loop control, the overshooting automatically disappears. In biologically

saccadic control, the overshooting is overcome by a mixture of agonistic and antagonistic

motoneuron inputs [2].
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