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A NOTE ON NONEQUIVALENT QUADRUPOLE SOURCE CYLINDRICAL 

SHEAR POTENTIALS WHICH GIVE EQUAL DISPLACEMENTS 

BY D. G. HARKRIDER AND D. V. HELMBERGER 

ABSTRACT 

Two standard integral forms of the cylindrical shear potentials for point quad- 
rupole seismic sources, a frequency domain k-integral and a time domain Cagniard- 
de Hoop path p-integral, are shown not to be the frequency-time domain inverse 
of each other. Their relationship is derived and they are shown to be seismically 
equivalent in that they yield the same displacement field. 

INTRODUCTION 

During the last few years, two integral representation forms for the cylindrical 
shear potentials due to a point quadrupole source, e.g., point shear dislocation or 
double couple, have been used in seismic wave propagation formulations. One is a 
wave number or k-integral representation in the frequency domain (Sato, 1969, 1972; 
Harkrider, 1976), and the other is a ray parameter or p-integral over a Cagniard-de 
Hoop path representation in the time domain (Helmberger, 1974). Each form has its 
own advantages in investigating seismic waves in multilayered media. 

Analytic and numerical evaluations have shown that the two forms are not the 
Fourier time-frequency transforms of each other. It  is the purpose of this paper to 
relate the two forms and to show that they are seismically equivalent in that they 
both yield the same displacement field. I t  is shown that the discrepancy results from 
the omission of a residue contribution in the evaluation of the time domain potential. 
The omission affects only the potentials; the displacement derived from the potentials 
is not affected. 

INTEGRAL RELATIONS 

The cylindrical shear potentials for a quadrupole source in the frequency domain 
involve integrals of the form 

.41 = ~le ~-~ = f® F~ J'~r---~) dke ~-'~ 
J o l t ,  

QO 

-42 = ~ ±i~ = fo F~J2(kr) dke ± ~  (1) 

where 

kv - -  CO 

Y 

k exp (--v~lz -- z01) 
F ~  ----- 

yv 

((k 2 - k~)l/~; k > k~ 

~ = ~ [i(k~ ~ - k2)i/~; k < k~ 

CO is the angular frequency, v is the body velocity and (r, ¢, z) are the cylindrical 
coordinates (Sato, 1969, 1972, and Harkrider, 1976). Harkrider (1976) expressed 
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the integrals in closed form as 

~o r 

where 

~2 = e - i~R_  __2V (e_ik~lz_Zlo _ eikVu) 
R + ion# 

R ~ -  ( z - z 0 )  ~ + r  ~. 

(2 )  

Taking the inverse Fourier transform defined by 

1 "z --i~t ~ = ~ ~ ~ e  d ~  

we have 

h(t) = V[H(t -- [z -- Zo]/V) -- H(t - R/v)] 

~2(t)  = ~( t  - R / v )  
R 

2VH(t - Iz  - Zo[/V) 2j H(t -- R/v) + -~ 

= _~II~+O 1 -#2v ( t - - R / v ) l H ( t - R / v ) }  + ~ H ( t - - i z - -  Zol/V). (3) 

Since ~1 was obtained from an integral table, after a change of variable and some 
manipulation, the integral for ~1 was integrated numerically for sets of (r, z, v, ~) 
and was found to be in good agreement with the given closed form expression. A further 
check was obtained by taking the limit of ~ --* 0 for the integral to obtain the area 
under ~1 and the value of ~ as t --* ~ .  The area under ~ is 

fo "~ Jl(kr) Lira ~I(o~) = e -kl~-'°l dk 

(R  - I~ - ~o[) 

The long time value of ~1 is 

Similarly 

L ~  { ~ ( ~ ) }  = O. 
oj-~ 0 

Lim~_,o "~(~) = fo e-~l~-~°lJ~(kr) dk 

1 (R - [ z -  Zo[) ~ 
17 # 

Lira { / ~ ( ~ ) }  = 0 
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which agree with the closed form expressions in equations (3). The area relation 
for ~2 is found in Erdelyi et al. (1954) equation 4.14(1), i.e. 

0 g° 

and ~1(0) follows from the relation 

~2(~)  = 

(Harkrider, 1976). 

e -'ikvR 2 

Although the closed form relation for the integral form of ~2(0) was also obtained 
from tables, it is related to integral expressions which have been frequently used in 
static problems. For instance Sato and Matsu'ura (1973) present a table for various 
(m, n) of the integral form 

~o 

I~,,~ = fo k'~e-klz-~°lJ'~(kr) dk. 

The tables were obtained by taking multiple z and r derivatives of the integral ex- 
pression for ( l /R) .  

by 

~2(0) is related to 11,3 

Oz 
- sgn(z -- Zo)I1,2. 

From our previous relations 

a~(0) 
Oz 

r2(2R + Iz - -  z0[) 
sgn  (z  - -  z0) R~(R + Iz  - -  z01) ~ 

which agrees with Ix.2 in the tables. 

GENERALIZED RAY THEORY INTEGRAL RELATIONS 

Following Helmberger (1974), we express the inverse of the integrals in equation 
(1) as 

f '~ H ~ - -  ~-)(t-- T ÷ pr) 1 dp 

where 

ff ,o H ( t  - r)c(t ,  r) ~2(t) -- 2 0 Im (4) 
-~r  O--t o (t - r-)ff2-~ --  - ~ -  -2pr) 112 p~ dp 

k 
p ~ - -  
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r = pr + y ~ [ z - -  zol 
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and 

c(  t, .r ) = cosh I2  eosh-~ ( t  - r + -)]. 
Before deforming the integral path to the Cagniard-de Hoop path (see Gilbert and 
Helmberger, 1972), it should be noted that there is a first order pole at p = 0 in both 
integrals. As p --* 0, we have the limits 

1 
~v "--)' -- 

Y 

and since 

where 

c( t, .~) 

I~ - .ol 
V 

[.(4 + ' ± 
= ~ L ( A  + V ' 2 ~ L ~ )  ' J 

A = t - "r + p r  
pr  

t - -  t z  
A - - ~  

pr  

the integrand of ~1 

and the integrand of ~2 

~(t,  .~) - - ,  2 ( t  - t , )  ~ 
p~r 2 

v H ( t -  t . )  1 

r '  p 

----> 2 v ( t  - -  t ~ ) H ( t  - -  t , )  1 
r 2 ~9 ° 

Thus the lower limit of the integrals is actually an infinitesimal distance above the 
origin on the positive imaginary axis. For the inverse of the Sommerfeldt integral, 
i.e., zero order Bessel function in the integrand 

fo ~ H ( t  - r) P-- d p  G0(t) = Im (t - -  r)fiV([ - Z  r Uc - 2pr)  112 ~ 

there is no pole at the origin and the lower limit is at the origin. 
Deforming the contour from the positive imaginary axis to the Cagniard-de Hoop 

contour, r (Figure 1) defined by r(p) positive real, we have 

ffl l . . f t  1.. 
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where the C contour is the infinitesimal quarter circle about the origin from + i 0  to 
+0 .  Now 

fc H(t - dp = - (p = O) = -Triv-- H(t - t~) T)(t~.T 2 Pr) 1 ~r/Residu e 
( t - -  ~-)m(t -- r + 2pr) ~pr  2 2 r 

and similarly 

fc ~ri~ v H(t  - -  r ) c ( t ,  r )  P d p  = - ~  2 ~. ( t  - -  t ~ ) H ( t  - t~) 

i¢o~ 

Ira(p) 

,o ,c ~_:R,,v ~ / / f  r 
r(.~O01 Re(p) p=r/RV 1/V 

v 
Fze. 1. First quadrant of the complex p plane showing contours C and P. 

o r  

fr j ( ~  -- r)(t  -- r + pr) 1 dp 

[ 1 a fr H ( t - r ) c ( t , r )  Pdp $~(t) = atO 2 ~v (t - t~)H(t - &) _ ~2 Im (t --~/V((t : $  Lt--2pr)--,~ 

2V H ( t -  &) -  2 0 Im f H(t  - r)c(t,  r) p dp. 
r 2 ; o-t ~r (t -: ~J~(t =-;  +--2pr) ,-~ 

Changing the variable of integration to ~ we have 

2 ft' ( t -  r +  pr) (dp~ 1 
$,(t) = ~ H(t -- &) -- lr Im . ( t - - ~ ' - ~ / ~ - - -  - r + 2 p r )  't2 k,--~/ ~ p d r  

&(t) = H ( t - -  & ) -  2~r Im 'R (t -- T)'/2~ :" ; 4- 2Pr~ & ~ 7, 

where 

dp _ i~. 
dr  (v 2 - t~2) 112 

R 
V 

and the lower limit is t~ since the integrands are real for the interval & < r < t.. 

(5) 
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Comparing equations (5) with equations (3), we see that 

2 Re f t  (t - .r -k pr) 
~r tR p(t -- T)~/2(t L -~ ~_ "2p'-~)l/2(T2 _ tR2)l/2 d T  ----- vH(t -- tR) 

2 [ c(t, T)p 
Re dr ~r JtR ( t -  ~) l '2( t -  ; + ~ppr)l'2(T 2 -- tR2) 1/2 

E 1 2v('--t~)]H(t--tR). = --1--~ (6) 

Equations (6) were integrated numerically for various sets of (r, z, v, t) and were 
found to be in good agreement with their closed form expressions. 

Helmberger (1974) ignored the residue contribution in equations (5) since, as we 
shall see in the next section, these terms do not contribute to the displacement field. 
They are present with the Cagniard-de Hoop contour integral in order to yield a 
finite spectral amplitude at zero frequency for the shear potentials. 

DISPLACEMENT CONTRIBUTION 

For purposes of discussion we will use the following superscript notations 

where from equation (2) 

2~ 2 ~--- zZ[2 (1) -31- A 2  (2) 

~oJ r 

z~l(2) -- 1 Y e_ikvlz_zole±i6 
i~o r 

and 

I ~  2V l eikvRe±i2q' 
A~(1) = - + ~ r  2 

2~2(2) __ 2V --ikvlz--zol 4-12~ 
~.~r 2 e e . 

(7) 

By substitution it is easy to verify that not only A1 and A2 satisfy Helmholtz 
equations, i.e. 

V~  = - k 2~ 

as stated in Harkrider (1976), but that each superscripted term also satisfies the 
Helmholtz equation. 

The integral forms of equation (1) are associated with the S V  cylindrical potential, 
'~, and the SH cylindrical potential, X, when the spectral displacement field, ~ is 
expressed as 

= grad ~ + curl curl (0, O, ,YI,) + curl (0, O, 2~). (8) 
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Forming the shear potentials from equations (7), it is easy to verify by direct sub- 
stitution in equation (8) that the superscript (2) terms do not contribute to the 
displacement field. The elimination results from the special form of A (2) i.e. 

A i  (2) ~,~ L e±im% -ikvlz-zot 
r m 

which in addition to satisfying the Helmholtz equation also satisfies 

and 

02A 4 (2) 
-- k2Ai (2) 

Oz 2 

1 O (  OAi(2)~ 1 02A~ (2) 
r + - 0 .  

r Or -Or - - /  r 2 Off 2 

It  should be noted that the standard cartesian shear potentials (qq, ~2, ~3) impli- 
citly defined by 

with 

z~ = grad 5 A- curl ('~1, ~Iq, ~Iq) = 0 

div (~1, "1"2, ~Iq) = 0 

do not contain terms involving exp [-ik~ [ z - zo [] since 

,~  = 1 (curl ~ ) .  
k~ 2 

CONCLUSIONS 

We have shown that the forms of the cylindrical shear potentials used by Harkrider 
(1976) and Helmberger (1974) are seismically equivalent in that they both yield the 
same displacement field. 

Even though 

Jl~r____)) dke~t d~ F~ 

1 2  f f  ( t - -  r + pr) ( d p )  1 d~ " ~ - - -  Im . . . .  
r R (t -- T)l/2(t -- r A- 2pr) 11~ -~r ~I~P 

and 

L F~ J2(kr) dke i~t d~ 

_2~ 0-t0 Im t~ (t -- r)1/2~ ~ -~ + 2p@ 12 \ d r ]  ~ 

cylindrical shear potentials expressed in terms of the right-hand side do not contain 
noncontributing terms to the displacement field as do the left-hand side relations. 
However, the displacement field expressed as an integral over k does not contain 
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these plane-phase waves. Only the cylindrical shear potential  fields expressed as 
k-integrals contain them. Thus analytic or numerical evaluations of the displacement 
field as a k-integral do not  yield these nonpoint source terms. In  generalized ray 
theory for quadrupole sources (Helmberger,  1974), the ability to isolate and eliminate 
these terms in the t ime domain for shear potentials is based on the recognition tha t  
they  are given by  the residue contribution of the pole a t  p = 0 in the Cagniard-de 
Hoop inversion technique. Since there are no poles or unusual singularities in the 
k-integrals of equation (1),  it is not  obvious which pa r t  of the integration pa th  con- 
t r ibutes  them or even if a pa th  can be chosen which will separate them from the dis- 
placement  contributing par t  of these source shear potential  representations. 
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