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A Note on Nontrivial Periodic Solutions of
Dynamical Systems with Subquadratic
Potential

L. SANCHEZ*

ABSTRACT. We obtain non-constant periodic solutions for a class of
second-order autonomous dynamic systems whose potential is subquadratic
at infinity. We give a theorem on conjugate points for convex potentials.

1. INTRODUCTION

This paper is concerned with the existence of periodic solutions u(t)
of a conservative system of the form

W + 7 F(u) = ht) (1)
where F € C'(RV,R) (i = 1,2,3) is subquadratic at infinity and h(t)

is a continuous periodic vector-valued function. Our aim is to show how
the saddle-point theorem of Rabinowitz [11], together with results of
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Lazer and Solimini [9] that give supplementary information based on the
Morse index of critical points, can be used to obtain in a quite simple
way, not only the existence of a periodic solution of (1), but also some
basic facts about nontrivial solutions of the autonomous counterpart of
1,

u’ + g F(u) = 0. (2}

Since our hypotheses (see §2) imply that F’ has at least ome critical
point in RY, the interesting question about (2) is whether there exist
nontrivial {(i.e. non constant) solutions. We give a condition for this to
happen in theorem 2, which may be viewed as a generalization of the
well-known fact that, for the pendulum scalar equation

u'’ + asinu = 0,

nontrivial oscillations appear only with periods T > 27 / \/a.

The text is organized as follows. In section 2 we present an existence
result for (1) which will be used in the remaining sections and which lies
upon assumptions closely related to those introduced by Ahmad, Lazer
and Paul [1]. In section 3, we give a sufficient condition for the existence
of non-constant T-periodic solutions of (2). Finally in section 4, we give
a theorem on “conjugate points” for (2), in the convex case. We point
out that combining this result with the forementioned background of
critical point theory a simple proof of the existence of a solution, with a
given minimal period T, of (2), can be given. This last result has been
obtained for general subquadratic Hamiltonian systems by Clarke and
Ekeland [5] (see also Ekeland and Hofer [6]). A simple approach in the
case where the potential is even was given by Willem [15]. We use a
device similar to that of Salvatore {13,14]. Since for convex potentials
the Morse-Ekeland index is well-defined, these results may be worked
out by adapting the method described in [6], {7] or [10, chapt.7]. Our
approach is an alternative to this method; basically it differs from it in
the sense that we study the Morse index of a “direct” rather than of a
“dual” action functional.

Since many authors have studied the above mentioned problems it
would become lengthy to quote a complete bibliography. We therefore
confine ourselves to refer in addition to the work of Ambrosetti (2], Am-
brosetti and Mancini [3}, Benci, Cappozi and Fortunato {4], Rabinowitz
[12], Girardi and Matzeu [8] and also to the book by Mawhin and Willem
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[10] for a survey. Their references provide a complement of information
in the existing research in this area.

The author is indebted to the referee for suggestions that con-
tributed to improve this paper.

2. EXISTENCE OF A PERIODIC SOLUTION

Suppose that F € CY{RN,R) and h € C([0,T]),RN) satisfy the
following assumptions. Here |- | denotes the Euclidean norm of RV,
(A) F(u) = o ([ul*) as |u| — oo ;

(B) There exist 7,¢, R > 0 such that whenever v € SN L weRVis
such that jw — v| < ¢, and p > R we have

VF(pw)-v 2.

(©) fy h(t)dt =

Examples: (i) Let ¢ € C(R,R) be even and set F(u) = ¢(|u]).
Then F satisfies (A)-(B) if and only if lim g0 9(z)/2? = 0 and
lminf, 4o '(2) > 0.
(ii) If A(u) is a positive definite quadratic form in RY, the function
F(u) = (1 + A(u))'/? satisfies (A)-(B).
(iii) Let ¢,% € C1(R,R) be such that ¢/, 4’ are bounded,

im 29 _o m P _

|&]~+o0 222 |z|—too 352

lim inf cp'(a:) >0, lim inf 1,!;’(2:) >0,

lim sup ¢'(z) <0, lim sup ¢'(z) <0.
T— —00 =00
Then F(z,y) = ¢(z) + ¥(y) satisfies (A)-(B) in R?, and the same holds
for any perturbation of the form F(z,y)+G(z,y) where G € CY(R*,R)
satisfies 7G(u) — 0 as |u| — oo.
Assumptions (A), (B) are close to the following, which have been
introduced by Ahmad, Lazer and Paul [1] in studying Dirichlet problems:



182 L. Sanchez

(A*) ¥ F(u) is bounded in RY;
(B*) lim|ﬂ|_.oo F(u) = +00.

In this sense our first theorem is a variation on the results of (1] which,
as shown in [10,chap.4] still holds for the periodic boundary condition.

Theorem 1. Let F € C'(R",R) and h € C([0,T];R") satisfy (4)-
(B)-(C), or (A*)-(B* )-(C). Then the system (1) has at least one solution
u(t) such that u(0) = u(T) and v'(0) = «'(T).

Proof. We need only consider the first set of assumptions, since
the proof in the other case is well known (cf. [10]}. Throughout the
paper we shall make use of the functional

J(w) = /DT (@ - F(u) + h(t)-u)dt

(where - denotes the scalar product of RV) which is well-defined in the
Hilbert space H} = {u € H'(0,T;R") : u(0) = u(T)}. Moreover
J € C'(H},R). We shall obtain a critical point of J by means of the
saddle-point theorem of Rabinowitz [11]. By well-known arguments,
such a critical point is a solution of class C? of (1) as in the statement of
the theorem. We now verify the hypotheses of the saddle-point theorem
with respect to the direct sum decomposition AL = RV @ I? where RV
is identified with the subspace of constant functions and H consists of

those u € H1 such that fOT u dt = 0. Namely, we must show that:
(i) J is bounded from below in H;
(i) Hmygo el (c) = —o if c € RV
(iii) J satisfies the Palais-Smale condition.

Proof of (i). This is a straightforward consequence of the fact that for
any € > 0 we can find C' > 0 such that F(u) < ¢[u|? + C for all u € RV,
together with the Wirtinger inequality

47['2 T T ~
F_/ |u|?dt < / lu'[*dt, v € H,
0 0
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and the hypothesis (C).

Proof of (ii). It obviously suffices to show that F(¢) — +o0o0 as |¢] - oo
in RY. Now if ce R™, || > R, let d = Mc/|c| and write

1 —
F(c) - F(d) = |c - d| /0 TF(d+ t{c — d)) - %dt.

Assumption (B) implies F(c) > nle — d| + K, where K = min{F(z) :
|z]| = M}, and (ii) follows.

Proof of (iii). Let (u,) be a sequence in H} such that J(u, ) is bounded
and J'(u,) — 0. Consider the decomposition v, = a, + w, where
a, € RN, w, € H. Given € > 0 there exists Cy > 0 such that

T |,wr i2 T
f (—;- + hwn) dt < e/ [t [2dt + Cy
0 0

T
< eTlan|* + ej lwy|2dt + Cy.
0

Then if |] || denotes a norm in H1 and C; are constants independent on
n we obtain

lwall* < €Calanf® + . (3)

We claim that |an| is bounded. If this is not the case, then along
some subsequence (still denoted a,) the preceeding inequality implies
||wn||/lan] — 0. Now let z,(t) = wn(t)/|as|. We obtain

n(t) = |az|(ve + 2n(t)) (4)

where v, = an/|a,| and z,(t) — 0 uniformly in [0,7"]. We may suppose
that v, — v in V-1, Since

T
(<)o) = [ TPt v
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{B), (4) and Fatou’s lemma allow us to conclude that
lim nim’ (=J'(un),v) > Ty >0,

a contradiction which proves the claim. By virtue of (3), u,(t) is
bounded in H}. By standard results, {u,) contains a convergent subse-
quence. The proof is complete, B

3. AUTONOMOUS SYSTEMS

We now turn to the autonomous system (2). We suppose that F is
C? and still satisfies (A)-(B). Theorem 1 is now a triviality since F" has
a minimum in R, and each critical point of F is a T-periodic solution
of (2) for any T > 0.

Let us introduce the following definition and notations. Given T > 0
and a critical point @ of F, we say that @ is T—admaissible if the spectrum
o{ F"(%)) does not contain numbers of the form 4n?x2/T%(n € Z). f 4 is
a T admissible critical point of F', we accordingly number the eigenvalues
of F"(4) as

/\1(’&) <--- <L Ak(ﬁ) <0< )\k+1(ﬁ) <--- < AN(ﬁ)

(so that k is the index of @ as a critical point of F) and denote by
n = n(4) the greatest integer with the property 4n?x? /T? < Apyy (&),
provided that £ < N.

For the statement of the next theorem we also include the condition:

(C*) There exists R > 0 such that 7 F(u) # 0 if [u| > R.
Theorem 2. Let F € C*(RN R) satisfy (A)-(B) or (A*)-(B*)-(C*)

and suppose that each critical point of F is T-admissible. If for each
such eritical point 4 one of the following conditions is satisfied

(D(N—-kK+2m(N-k)>N
(i) (N — k) +2n(N — k) < N and An(2) < 4(n + 1)?x%/T?
then (2) has a non-constant T-periodic solution.

Remark. (a) (i) always holds at a local minimum provided » =
n(i) > 1. (ii) always holds at a local maximum. In R? each critical
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point of index 1 satisfies (i) or (ii). If ¥ = N, n is undefined but we take
2n(N - k)=0.

(b) If F has only one critical point % (a minimum) the theorem asserts
that there exists a T-periodic non-constant solution provided that T >

2?1'\/ )\] (ﬁ)

Proof. Since each critical point of F is T-admissible, it is nonde-
generate; assumption (B) or assumption (C*) thus implies that the set
of critical points of F is finite. On the other hand the second derivative
of J at 4 is the quadratic form

T
J"@) () = / (W] - F*(@)o - v)dt, v € H.
1]
Since the linear system
o + F"(a)o = 0

has no nontrivial T-periodic solution, J”(%) is nondegenerate. On the
other hand the Morse index of % as a critical point of J (that is the
index of J"(#)) is (see {10],chap.9) no smaller than (N — k) + 2n(N — k),
with equality if n = n(i) satisfies An(%) < 4(n + 1)*n?/T?%. 1t follows
that if either (i) or (ii) holds, the Morse index of % is different from N.

Assume that (2) has no solution distinct from the critical points of
F. Then lemma 1.1 in [9] is applicable and it implies the existence of a
critical point of J with Morse index N, a contradiction. This ends the
proof, [ |

Remark. Theorem 2 may be proved by using Morse inequalities
instead of explicit resource to lemma 1.1. in [9]. In fact, assume that the
set of critical points of J coincides with that of F,let ¢; < ... < ¢, be the
distinct critical values of J and choose e < ¢; such that a < inf{J(u):
u € H}. Let D be a closed disk centered at the origin in R such that
its boundary § is contained in J*, and choose b > maz{c,,mazpJ}.
Then we have a commutative diagram of homomorphisms
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OnN
Hn(D,S) — Hn-1(S)
in] i lin
Hyn(JbJ®) — Hn_1(J9)
N
where the homology groups are taken over the real numbers and the
vertical arrows are induced by inclusions. (H denotes reduced homol-
ogy.) The arguments in the proof of lemma 1.1. of [9] show that
jn # 0 since By is an isomorphism it follows that Hy(J%,J%) # 0.
Ifmpy = mN(J", J*) is the number of critical points of J with index ¥
it follows that my > dimHn(J®, J?) > 1, a contradiction with (i)-(ii).
Thus we see that the saddle-point theorem geometrical setting might
be replaced by the more general condition that for some regular value
¢ of J we have § ¢ J® and that this inclusion induces a nontrivial
homomorphism jy in homology.

4. CONJUGATE POINTS. SOLUTIONS WITH GIVEN
MINIMAL PERIOD.

In this section we assume that F is convex. More precisely we
introduce the following assumption

(D) F € C3(R~,R) and F"(#) is positive definite for each & € RV,

In the sequel we shall use the following form of a theorem of Benci
and Fortunato. See Salvatore [13] for a more general statement and
ptroof.

Theorem 3. Let X be o Hilbert space, 6 a given positive number
and {as : |6] < 6} a family of continuous, quadratic forms such that

(i) for each & there exist ms > 0 and a weakly sequentially continu-
ous quadratic form bs such that as + msds is a inner product equivalent
to the one given in X.

(ii) there exists v > 0 such that

21 w@a) < —vlplf  Vee Xo
dé =0
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where Xo = {u € X : ap(u,v) =0Vv € X},
(1it) there exists M > O such that

las(z,y) — ao(=,y)| < Méfzl ||9l], Vz,y € X,

Then there exists 6y > 0 such that whenever —6; < £ < 0 < 5 < §; we
have

indez of a, = indez of ag + dim X,
index of ag = indexz of ap. W

Now let #(t) be a non constant solution of (3) with period T > 0.
The linear system :
2+ F'(a(t)z =0 (5)

has the nontrivial solution z = @'(¢).

We say that a number § € (0,7 is conjugate to 0 with respect to i if
and only if (5) admits a nontrivial S-periodic solution. The multiplicity
of § as a point conjugate to 0 is, by definition, the dimension of the
subspace of S-periodic solutions to (5).

By performing the change of independent variable t = (§/T)r we
may reformulate the above definition as follows: .5 is conjugate to ¢ with
respect to % if and only if the system

(Tz/sz)un + FH(ﬁs(T))v =0, ﬁs(T) = ﬁ(;—'r) s (6)

admits a nontrivial T-periodic solution v(7), the multiplicity of S as
a conjugate of 0 being the dimension of the subspace formed by such
solutions. Let us define a function m : (0,7] — Ng by setting m(S) =
index in H} of the quadratic form

T
Qs(v) = /0 [(Tzlsz) |2 = F"(s)v - v)|dr.
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Let us remark that Q7 = J"(%), so that m(7T) is the Morse index of &
as a critical point of J. The study of the function m will be based on
theorem 3. We proceed to show that the family {Qgs4s}, where 6] is
small, satisfies the hypotheses of that theorem.

Lemma 1. Let F satisfy (D). Then given § € (0,T) there exists
k > 0 such that, for any T-periodic solution v(T) of (5):

d

25| @s+s(v) < —K|v|[*.

&=0

Remark. Since the space of solutions of (6) is finite-dimensional
the choice of the norm for v is irrelevant.

Proof. We have

Qs+s(‘v) f [ (5+5)3| o - T Z 6::.61' 02

CeRa Gk ‘5r)v.-(r)vj(r)} i =

T
:f [ 21? LR . E »FPF
0 S+6)3 S 4+ 8T £ 92,02 ;0

(as+a(r))ﬂg+5.k(r)vi(r)vj(r)] dr

so that

d £z
7 5_.0QS+6(U) f [ f - Zaz,ax,az (@s)is pviv; | dr.

In order to compute the triple sum let us note that (6) implies

T d Jz=8 AR @Z-F-
v v+ 2 m(us)us kvivj+22 9z, (us)v v; =0




A Note on Nontrivial Periodic Solutions of Dynamical .... 189

and on account of (6) again the last summand equals —(27?/§%)v" - v",
whence

Zﬂ—(a Yils viv; = (|v 12— v-v")
57, 02i0z;0z SIS T .5‘2d ’

d

T 2T H2 T d 12 "
5l Qs = [ [ - Gra o - oo er

_ g_:( /0 _2lv'|2dr — [r(mz o }:Jr

+ j:(h;'lz —v- v")dr)

= L (v v )

§=0

- ———(I VT) + 25 F/(as(T))(T)- v(T))

Therefore the lemma follows from the facts that F'" is positive definite
and that the expression (|v'(T)|? + a|v(T)[?)!/?, where a > 0, is a norm
in the space of solutions of (6). =

Lemma 2. Let § € (0,T] and 6, > 0 be given, so that |ég| < S/2.
Then there exists M > 0 so that

1@s+5(z,y) = Qs(z,9)| < MIé} Izl llyll, =,y € H, |6] < |dl.

Proof. We have

Qs+s(z,y) — Qs(z,y) =

T T2 t ' T2 "
[ [55ae v -y - s - Fas)e-o]ir
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There exists C > 0 so that

T T?
(S +6)2 )

7|6\ T
=55 +5 (gt ) SOV

if }6] < 6o. On the other hand, the (i, j)-entry of the matrix
F'(isys) — F"(iis) is

w35 (¢(5777) - gt (7)) -
83;62:,- T 62,3::, -

M OO

for some ¢ in the interval with end points (S/T)r and ((§ + 6)/T)r.
Then there exists C; > 0 such that (denoting by | | 2 norm in the space
of N X N matrices)

C
|[F"(s+s) - F"(@s)| < 161,

Hence
T Cyr
@ses(ar) - Qs I <ldl [ (Cla’v1+ Frle ol Jar
<18} M =i} flgl] =
where M = max(C,C1).
Lemma 3. If § > 0 is sufficiently small we have m(5) = N
Proof. Since Qs is negative definite in the subspace R, it follows

that m(Qs) > N for all § € (0,T]. However, if & > 0 is such that
F"(@g(r)) < b for all 7 € [0,T) it turns out that

T
Qs(v) 2 /0 [(T2/5*)|v']® - bv]?]dt.
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Now the quadratic form in the right-hand side is positive definite in
whenever b < 47? /5% as follows from the Wirtinger inequality. Thus
clearly m(S) = N for these values of S. B

Following a pattern similar to that of Salvatore [13,14] in order to
study minimality for some wave equations, we can now establish:

Theorem 4. Let F € C3(RN,R) be such that F"(u) is positive
definite for all u € RY and % = %4(t) a non constant T-periodic solution
of (2). Then the Morse index of & as a critical point of J is given by

m{@r)=7+ N

where v is the count of conjugate points to 0 in (0, T) with respect to %,
each one taken as many times as its multiplicily.

Proof. According to Theorem 3 and Lemmas 1 and 2, the integer
valued function § — m(Qs) is increasing and left continuous; it has a
discontinuity at a point § if and only if S is conjugate to 0 with respect
to @, its jump being given by the multiplicity of § as a conjugate point.
The theorem follows from these remarks together with Lemma 3. &

We illustrate the use of this theorem on conjugate points by giving
a proof of a version for (2) of a theorem of Clarke and Ekeland {5] (see
also [6,2]), still using the theory of Lazer and Solimini [9].

When F' is positive definite, F can have only one critical point.
We therefore suppose that the only critical point of F' is the origin and
we let 0 < A; < --- € An be the eigenvalues of F¥(0).

Theorem 5. Assume that F satisfies (A),(B),(D). Then if T >
27 /v/ A1, (2) has at least one solution with minimal period T.

Proof. The hypothesis T > 2 /+/X; clearly implies that the Morse
index of 0 as a critical point of J is at least 3N. By Theorem 2.4 in [9]
we conclude that J has a (non constant) critical point @(t) with Morse
index £ N. Suppose that the minimal period of #(t) is T/m, where
m € N. Then there exist at least m — 1 conjugate points to 0 in (0,T).
Theorem 4 implies N > m — 1+ N. Therefore m = 1 and the proof is
complete. @&
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