55. A Note on Norms of Compression Operators on Function Spaces

By Tetsuya Shimogaki

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1970)

1. In what follows, let $(X, \|\cdot\|)$ be a rearrangement invariant Banach function space, i.e. a Banach space of Lebesgue integrable functions over a (finite or infinite) interval (0, l) which satisfies the following conditions:

- (1.1) $|g| \leq |f|$, $f \in X$ implies $g \in X$ and $||g|| \leq ||f||$;
- (1.2) $0 \le f_n \uparrow, \|f_n\| \le M, n \ge 1 \text{ implies } f = \bigcup_{n \ge 1} f_n \in X \text{ and } \|f\| = \sup_{n \ge 1} \|f_n\|;$
- (1.3) If $0 \le f \in X$ and g is equimeasurable with f, then $g \in X$ and ||f|| = ||g||.

From (1.2) it follows that the norm $\|\cdot\|$ on X is semicontinuous, i.e. $0 \le f_n \uparrow f, f_n, f \in X$ implies $\|f\| = \sup_{n \ge 1} \|f_n\|$. We denote by σ_a (a>0)

the compression operator on X:

(1.4) $\sigma_a f = f_a$, $f \in X$, where f_a is given by $f_a(x) = f(ax)$, if $ax \le l$, and $f_a(x) = 0$ otherwise. Since X is rearrangement invariant, the linear operators $\sigma_a, a > 0$ are bounded, and $\|\sigma_a\| \le 1$, if $a \ge 1$, and $1 \le \|\sigma_a\| \le a^{-1}$, if 0 < a < 1 [8]. The values of $\|\sigma_a\|, a > 0$ play an important role to describe some interesting properties of the function space X concerning some interpolation properties for classes of linear operators [4, 8, 9], the Hardy Littlewood maximal functions [7], or the conjugate functions [1, 5].

Now we put for a > 0 and $n \ge 1$

(1.5) $\gamma_a^n = \sup\{\|\sigma_a f\|; f \in S_n, \|f\| = 1\},\$

where S_n denotes the set of all positive simple functions with at most *n*-distinct nonzero values. Then we have for every a>0

$$\gamma_a^1 \leq \gamma_a^2 \leq \cdots \leq \|\sigma_a\|.$$

When X is an $\Lambda(\varphi)$ -space or an $M(\varphi)$ -space [2], $\gamma_a^1 = ||\sigma_a||$ holds; When X is an Orlicz space L_{φ} we have $\gamma_a^2 = ||\sigma_a||$ [4]. Since $||\cdot||$ on X is semicontinuous, $||\sigma_a|| = \sup_{n \ge 1} \gamma_a^n$ holds for every a > 0. Now the following questions are naturally raised:

i) For every a>0, is $\|\sigma_a\|=\gamma_a^2$ true?; For an arbitrary X, does there exist an $n\geq 1$ such that $\|\sigma_a\|=\gamma_a^n$ holds for each a>0?

¹⁾ |f| denotes the function $|f(x)|, x \in (0, l)$. $f \le g$ means that $f(x) \le g(x)$ a.e. on (0, l).

ii) For an arbitrary X, do there exist an M > 0 and an $n \ge 2$ such that $\|\sigma_a\| \le M \gamma_a^n$ holds for every a > 0?

The questions above are closely related to a problem concerning the Hardy Littlewood maximal functions. X is called to have the Hardy Littlewood property and is denoted by $X \in HLP$ [3], if X satisfies that $f \in X$ implies $\theta(f) \in X$, where $\theta(f)$ is the Hardy Littlewood maximal function of f. For any x > 0 we put $x' = \min(x, l)$ and

(1.6) $\tau_X(x) = \tau(x) = ||\chi_{(0,x')}||,$ and call it the *fundamental function* of X. Since X is rearrangement invariant, $\tau(x) = ||\chi_e||$ holds for any measurable set $e \subset (0, l)$ with mes(e) = x. Recently R. O'Neil presented the following problem:²⁾

iii) Is it possible to characterize the property $X \in HLP$ in terms of the fundamental function τ of X?

This problem can be stated in terms of compression operators, since it is known [7,9] that $X \in HLP$ if and only if

$$\lim_{a\to 0} a \|\sigma_a\| = 0.$$

In this paper we shall show that there exists a rearrangement invariant Banach function space X failing to satisfy (1.7), which has, however, the same fundamental function as the space L^2 . Since $L^2 \in HLP$, this space gives the negative answer to the problem iii). At the same time, in view of $\gamma_a^n \leq n\gamma_a^1$ and $\gamma_a^1 = \sup\{\tau(a^{-1}x)/\tau(x); 0 < x \leq l\}$, a > 0, it appears as a counter example to the question ii) (hence to i) also).

2. Let l=1 and define the functions κ_a , $0 < \alpha \le 1$ by

(2.1) $\kappa_{\alpha} = \alpha^{-\frac{1}{2}} \chi_{(0,\alpha)}$. Let $n \ge 2$ be fixed, and put $\alpha_0 = 0$, $\alpha_1 = 2^{-2n(n-1)} \cdot n^{-1}$, and $\alpha_i = 2^{2n(i-1)} \cdot \alpha_1$ $= 2^{2n(i-n)} \cdot n^{-1}$. Also define the functions ω_n by

(2.2)
$$\omega_n = n^{-\frac{1}{2}} (\bigcup_{i=1}^n \kappa_{\alpha_i}) = n^{-\frac{1}{2}} \sum_{i=1}^n \kappa'_{\alpha_i},$$

where $\kappa'_{\alpha_i} = \kappa_{\alpha_i} \chi_{(\alpha_{i-1}, \alpha_i)}$, $1 \le i \le n$. By (2.1) and (2.2) we have

(2.3)
$$\int_{0} \sum_{i < \nu} \kappa'_{a_i} dx \leq 2^{n(\nu - n)} \cdot n^{-\frac{1}{2}} \cdot (2^n - 1)^{-1}, \quad 1 < \nu \leq n.$$

We denote by $\langle f, g \rangle$ the integral $\int_{0}^{1} fg dx$. Then, we have

(2.4) $\langle \omega_n, \kappa_{\alpha_{\nu}} \rangle \leq n^{-\frac{1}{2}} + n^{-\frac{1}{2}} (2^n - 1)^{-1}, \quad 1 \leq \nu \leq n.$

In fact, $\langle \omega_n, \kappa_{\alpha_\nu} \rangle \leq n^{-\frac{1}{2}} \langle \kappa_{\alpha_\nu}, \kappa_{\alpha_\nu} \rangle + \sum_{i < \nu} n^{-\frac{1}{2}} \langle \kappa'_{\alpha_i}, \kappa_{\alpha_\nu} \rangle \leq n^{-\frac{1}{2}} + n^{-\frac{1}{2}} \alpha_{\nu}^{-\frac{1}{2}} \int_0^1 \sum_{i < \nu} \kappa'_{\alpha_i} dx$ $\leq n^{-\frac{1}{2}} + n^{-\frac{1}{2}} (2^n - 1)^{-1}$. From this we can derive further by an elementary calulation

(2.5) $\langle \omega_n, \kappa_a \rangle \le n^{-\frac{1}{2}} + n^{-\frac{1}{2}}(2^n - 1)^{-1} \le 1, \quad 0 < \alpha \le 1.$ Also we have obviously

²⁾ The author expresses his thanks to Professor J. Ishii for informing him of this problem raised by Professor R. O'Neil.

$$(2.6) \qquad \langle \omega_n, \omega_n \rangle = 1 - 2^{-2n}$$

Next, we estimate the value $\langle \sigma_{n-1}\omega_n, \omega_n \rangle$ from above. Decomposing $\sigma_n^{-1}\omega_n$ into $\omega'_n + \omega''_n$, where

$$\begin{split} \omega_{n}' &= n^{-\frac{1}{2}} \sum_{\nu=1}^{n} \alpha_{\nu}^{-\frac{1}{2}} \chi_{(n\alpha_{\nu-1},\beta_{\nu-1})}, \ \omega_{n}'' = n^{-\frac{1}{2}} \sum_{\nu=1}^{n} \alpha_{\nu}^{-\frac{1}{2}} \chi_{(\beta_{\nu-1},n\alpha_{\nu})} \text{ and } \\ \beta_{\nu-1} &= n\alpha_{\nu-1} + \alpha_{\nu} - \alpha_{\nu-1}, \text{ we get} \\ \langle \sigma_{n-1}\omega_{n}, \omega_{n} \rangle &= \langle \omega_{n}', \omega_{n} \rangle + \langle \omega_{n}'', \omega_{n} \rangle \\ &\leq \langle \omega_{n}, \omega_{n} \rangle + n^{-1} \sum_{\nu=1}^{n-1} \alpha_{\nu}^{-\frac{1}{2}} \alpha_{\nu+1}^{-\frac{1}{2}} (n-1) (\alpha_{\nu} - \alpha_{\nu-1}) \\ &\leq 1 + (n-1) n^{-1} \sum_{\nu=1}^{n-1} \alpha_{\nu}^{-1} 2^{-n} (\alpha_{\nu} - \alpha_{\nu-1}), \end{split}$$

which implies

(2.7)
$$\langle \sigma_{n-1}\omega_n, \omega_n \rangle \leq 1 + 2^{-n}(n-1).$$

Since $\langle \sigma_{n-1}\omega_n, \kappa_n \rangle = n^{\frac{1}{2}} \langle \omega_n, \kappa_{n-1} \rangle$, we obtain by (2.5)
(2.8) $\langle \sigma_{n-1}\omega_n, \kappa_n \rangle \leq 1 + (2^n - 1)^{-1}.$

Thus, for every $n \ge 2$, we can define ω_n by (2.2) satisfying all the conditions (2.4)~(2.8). Now we pick up a subsequence $\{\omega_{n_\nu}\}$ of $\{\omega_n\}$ in such a way that $n_{\nu+1} > 2^{(2n\frac{3}{2})} \cdot n_{\nu}, \nu \ge 1$, and put $\bar{\omega}_{\nu} = \omega_{n_\nu}$. Then we have $\langle \langle \bar{\omega}_n, \kappa_n \rangle < n_n^{-\frac{1}{2}} + n_n^{-\frac{1}{2}} (2^{n_\nu} - 1)^{-1}, \quad 0 \le \alpha \le 1$:

(2.9)
$$\begin{cases} \langle \overline{\omega}_{\nu}, \kappa_{\alpha} \rangle \leq n_{\nu}^{-\frac{1}{2}} + n_{\nu}^{-\frac{1}{2}} (2^{n_{\nu}} - 1)^{-1}, \\ \langle \overline{\omega}_{\nu}, \overline{\omega}_{\nu} \rangle = 1 - 2^{-2n_{\nu}}, \quad \nu \geq 1; \\ \langle \overline{\omega}_{\nu}, \overline{\omega}_{\nu} \rangle \leq n_{\nu}^{-\frac{1}{2}}, \quad \text{if } \mu > \nu. \end{cases}$$

The last inequality of (2.9) is derived from (2.5) and the fact that $\bar{\omega}_{\mu}\chi_{(0,\beta)} = \bar{\omega}_{\mu}$ and $\bar{\omega}_{\nu}\chi_{(0,\beta)} \le n_{\nu}^{-\frac{1}{2}}\kappa_{\beta}$, where $\beta = \alpha_1$ defined above for $n = n_{\nu}$. Putting $g_{\nu} = \sigma_{n_{\nu}^{-1}}\bar{\omega}_{\nu}$, we get from (2,7), (2.8) and (2.9)

(2.10)
$$\begin{cases} \langle g_{\nu}, \kappa_{\alpha} \rangle \leq 1 + (2^{n_{\nu}} - 1)^{-1}; \\ \langle g_{\nu}, \overline{\omega}_{\nu} \rangle \leq 1 + 2^{-n_{\nu}} (n_{\nu} - 1); \\ \langle g_{\nu}, \overline{\omega}_{\alpha} \rangle \leq 1, \quad \text{if } \mu \neq \nu. \end{cases}$$

Now let C be the set: $\{\kappa_{\alpha}: 0 < \alpha \le 1\} \cup \{\overline{\omega}_{\nu}: \nu \ge 2\}$, and define a space X of integrable functions by

(2.11)
$$X = \left\{ f : \sup_{c \in \mathcal{C}} \int c f^* dx < \infty \right\} = \bigcap_{c \in \mathcal{C}} \Lambda(c)$$

where f^* is the decreasing rearrangement of the function |f|. The space X, equipped with the norm: $||f|| = \sup_{c \in C} \int cf^* dx, f \in X$, is a rearrangement invariant Banach function space including the space L^2 . Since, in virtue of (2.9), $\kappa_{\alpha} \in X$ and $||\kappa_{\alpha}|| = 1$ for all $0 < \alpha \le 1, \tau_X(\alpha) = \alpha^{\frac{1}{2}} = \tau_{L^2}(\alpha)$. On account of (2.10), $g_{\nu} \in X$ and $\lim_{\nu \to \infty} ||g_{\nu}|| \le 1$. On the other hand, $\lim_{\nu \to \infty} ||\sigma_{n_{\nu}}g_{\nu}|| = \lim_{\nu \to \infty} ||\bar{\omega}_{\nu}|| \ge 1$ by (2.9). Hence, $\lim_{\nu \to \infty} ||\sigma_{n_{\nu}}|| = 1$. Consequently, the fundamental function τ_X of X coincides with τ_{L^2} of the space L^2 , but the following condition (2.12) fails to be true in X:

(2.12)
$$\lim_{a\to\infty} \|\sigma_a\|=0.$$

241

The conjugate space $Y = \overline{X}$ of X is a rearrangement invariant Banach function space in which the condition (1.7) is violated, since the conditions (1.7) and (2.12) are mutually conjugate. Since Y is also rearrangement invariant, the fundamental function $\tau_Y(x)$ of Y is $\tau_X(x)^{-1} \cdot x$, hence $\tau_Y(x) = \tau_X(x) = x^{\frac{1}{2}}$ for all $x \in (0, 1)$. The fundamental function of Y coincides with that of L^2 , but the condition (1.7) is not satisfied. Therefore, the construction of the space Y gives the negative answer to the problem iii), and hence both X and Y provide counter examples to the question ii) at the same time.

References

- D. W. Boyd: The Hilbert transform on rearrangement-invariant spaces. Canad. J., 19, No. 3, 599-616 (1967).
- [2] G. G. Lorentz: Some new functional spaces. Ann. Math., 51, 27-55 (1950).
- [3] —: Majorants in spaces of integrable functions. Amer. J. Math., 77, 484-492 (1955).
- [4] G. G. Lorentz and T. Shimogaki: Majorants for interpolation theorems. Publ. of Ramanujan Inst., No. 1, 115-122 (1969).
- [5] R. O'Neil and G. Weiss: The Hilbert transform and rearrangement of functions. Studia Math., 23, 189-198 (1963).
- [6] W. A. J. Luxemburg: Rearrangement invariant Banach function spaces. Proc. Symposium in Analysis, Queen's University, 10, 83-144 (1967).
- [7] T. Shimogaki: Hardy-Littlewood majorants in function spaces. J. Math. Soc. Japan, 17, 365-373 (1965).
- [8] —: On the complete continuity of operators in an interpolation theorem.
 J. Fac. Sci. Hokkaido Univ., Ser. 1, 20, No. 3, 109-114 (1968).
- [9] —: An interpolation theorem on Banach function spaces. Studia Math., 31, 233-240 (1968).