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We compute the optimal transient growth of perturbations sustained by a turbulent channel flow
following the same approach recently used by del Álamo and Jiménez �J. Fluid Mech. 559, 205
�2006��. Contrary to this previous analysis, we use generalized Orr–Sommerfeld and Squire
operators consistent with previous investigations of mean flows with variable viscosity. The optimal
perturbations are streamwise vortices evolving into streamwise streaks. In accordance with
del Álamo and Jiménez, it is found that for very elongated structures and for sufficiently large
Reynolds numbers, the optimal energy growth presents a primary peak in the spanwise wavelength,
scaling in outer units, and a secondary peak scaling in inner units and corresponding to �z

+�100.
Contrary to the previous results, however, it is found that the maximum energy growth associated
with the primary peak increases with the Reynolds number. This growth, in a first approximation,
scales linearly with an effective Reynolds number based on the centerline velocity, the channel half
width and the maximum eddy viscosity associated. The optimal streaks associated with the primary
peak have an optimal spacing of �z=4h and scale in outer units in the outer region and in wall units
in the near wall region, where they still have up to 50% of their maximum amplitude near
y+=10. © 2009 American Institute of Physics. �DOI: 10.1063/1.3068760�

I. INTRODUCTION

Streaky structures, i.e., narrow regions where the stream-
wise velocity is lower or larger than the mean, are very com-
monly observed in turbulent shear flows. It is well known1,2

that such structures exist in the near wall region of turbulent
boundary layers and channel flows where they scale in wall
units with a mean spanwise spacing �z

+�100. There is also
evidence of the existence of large coherent streaky structures
extending outside the near wall region in the turbulent
boundary layer,3,4 the turbulent Couette flow,5 and the turbu-
lent channel flow.6 The size of these structures seems to scale
in external units.

In the case of laminar shear flows, it is known that
streaks have the potential to be largely amplified from
streamwise vortices through the lift-up effect.7–9 The maxi-
mum energy growth leading to the most amplified streaks
has been computed for virtually all the usual laminar shear
flows.10 In the case of the laminar channel flow, it has been
found11 that the optimal streaks are streamwise uniform with
an optimal spanwise wavelength �z�3h, where h is the
channel half width.

Butler and Farrell12 were the first to compute the opti-
mally amplified streaks in the turbulent channel flow. They
used the Reynolds–Tiederman13 turbulent mean profile based
on the Cess14 eddy viscosity model but used the molecular
viscosity in the linearized equations for the perturbations.
They found the same optimal streak spacing as in the laminar
case ��z�3h�, but they were able to retrieve the near wall
streaks optimal spacing �z

+�100 only by constraining the
optimization time to a fixed eddy turnover time. del Álamo
and Jiménez15 repeated the analysis using the eddy viscosity

also in the equations for the perturbations. They found, with-
out any constraint on the optimization time that the most
amplified structures are elongated in the streamwise direction
and that two peaks exist for the most amplified spanwise
wavelength: a secondary one scaling in inner units and cor-
responding to �z

+�100 and a primary one scaling in outer
units and with �z�3h. However, contrary to the laminar
case, the growth associated with this outer peak decreased
when the Reynolds number was increased.

Further investigation, related to the computation of the
optimal growth supported by a turbulent boundary layer,16

revealed that the linearized equations for the perturbations
used in Ref. 15 were not consistent with the ones used in
previous linear stability analysis of turbulent mean flows17

and of laminar flows with variable viscosity.18 The scope of
the present paper is, therefore, to repeat the analysis of del
Álamo and Jiménez15 for the turbulent channel flow using
the linear operator consistent with previous investigations of
the stability of turbulent and laminar flows with variable
viscosity.17,18 We anticipate that we find that the maximum
transient growth associated with the outer peak increases
with the Reynolds number. These revised results are consis-
tent with experimental evidence that the energy contained in
large scale streaky structures increases with the Reynolds
number.

II. TURBULENT MEAN FLOW

We consider the statistically steady, parallel, and span-
wise uniform turbulent flow of a viscous fluid in a plane
channel of half width h. Modeling the turbulent shear stress
with a turbulent eddy viscosity �t, and defining a total eddy
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viscosity �T=�+�t, gives in dimensionless units: Re��
+

=�T
+���dU+

/d�, where �T
+=�T /�, �+=� / ��u�

2�, Re�=u�h /� is
the Reynolds number based on the friction velocity u� and
the half width h of the channel; �=y /h. Cess14 expression19

for the total eddy viscosity is assumed as in previous
studies,15,17

�T
+��� =

1

2
�1 +

�2 Re�
2

9
�1 − �2�2�1 + 2�2�2

��1 − exp��	�	 − 1�Re�/A�
2�1/2

+
1

2
, �1�

where the same values for the von Kármán constant �

=0.426 and the constant A=25.4 used in Ref. 15 will be used
in the following. However, we have to remark that these
constants have been fitted to direct numerical simulation
�DNS� results20 for Re�=2000 and that, therefore, the valid-
ity of this basic flow profile is dubious at very large Re�.
Profiles of �T

+��� are displayed in Fig. 1�a�. The mean veloc-
ity profile can be retrieved by integrating dU+

/d�

=−Re�� /�T
+���, as initially proposed by Reynolds and

Tiedermann.13 The mean velocity profiles corresponding to
the �T

+ reported in Fig. 1�a� are displayed in Fig. 1�b� in inner
units.

III. LINEARIZED EQUATIONS

Small perturbations u= �u ,v ,w�, p to the turbulent mean
flow U= �U�y� ,0 ,0� satisfy the continuity � ·u=0 and the
linearized momentum equation,17

�u

�t
+ U

�u

�x
+ �v � U/�y,0,0� = − �p + � · ��T�y���u + �u

T�� .

�2�

Perturbations of the form u�x ,y ,z , t�= û�� ,y ,	 , t�ei��x+	z� are
considered �due to the homogeneous nature of the mean flow
in the horizontal plane�, where � and 	 are the streamwise

and spanwise wavenumbers, respectively. Standard
manipulations,10 generalized to include a variable
viscosity,17,18 allow to rewrite the linearized system into the
following generalized Orr–Sommerfeld and Squire equations
for, respectively, the normal velocity v̂�y� and vorticity


y
ˆ �y�:

�D2 − k2 0

0 1

 �

�t� v̂


y
ˆ � = � LOS 0

− i	U� LSQ

� v̂


y
ˆ � , �3�

with

LOS = − i��U�D2 − k2� − U�� + �T�D2 − k2�2

+ 2�T��D3 − k2D� + �T��D2 + k2� , �4�

LSQ = − i�U + �T�D2 − k2� + �T�D , �5�

where D and � �� stand for � /�y and k2=�2+	2.

IV. OPTIMAL GROWTH

The mean velocity profiles displayed in Fig. 1�b� are
linearly stable15 for all � and 	 so that infinitesimal pertur-
bations decay after enough time. However, some perturba-
tions can grow before decaying. The ratio �û�t��2

/ �û0�2,
where � � stands for the energy norm, quantifies the energy
amplification of a perturbation as it evolves in time. The

temporal optimal growth Ĝ�� ,	 , t�=supû0
�û�t��2

/ �û0�2 gives
the maximum energy amplification of a perturbation opti-
mized over all possible initial conditions û0. In the follow-
ing, we focus on the maximum optimal growth Gmax�� ,	�

=supt Ĝ�� ,	 , t� attained at the time tmax using the optimal
initial conditions. The methods applied here to compute the
maximum growth are the standard ones used in case of lami-
nar flows and are easily extended to flows implying a vari-
able viscosity �T

+���. The operators LOS and LSQ are dis-
cretized using a spectral collocation method involving
differentiation matrices21 based on Chebyshev polynomials
on a grid of Ny +1 collocation points. The numerical code has
been validated in previous studies.22 The results presented in
this paper have been obtained using from 129 to 513 collo-
cation points. We ensured the convergence of the results by
checking that they were not modified when the number of
collocation points was doubled.

Like in previous studies,12,15 it is found that only struc-
tures elongated in the streamwise direction �i.e., with ��	�
are amplified and that the largest energy amplifications are
reached by streamwise uniform �i.e., �=0� structures. We
have, therefore, computed the optimal energy growths for
several Reynolds numbers ranging from Re�=500 to Re�

=20 000 considering only streamwise independent perturba-
tions; essentially the same results are found for small stream-
wise wavenumbers ��h�0.1�. From Fig. 2, where the curves
Gmax��=0,	� are reported for all Reynolds numbers consid-
ered, the typical15,16 inner and outer peaks are readily seen.
In accordance with what was found in Ref. 15, for spanwise
wavelengths �z in between the two peaks, the time on which
the maximum amplification is attained is found to be roughly
proportional to �z. However, the maximum growth corre-
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FIG. 1. �Color online� �a� Cess eddy viscosity �T
+ and �b� corresponding

mean velocity profile, both displayed in wall units for the selected Reynolds
numbers Re�=500, 1000, 2000, 5000, 10 000, and 20 000.
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sponding to the main peak is found to increase with the
Reynolds number, contrary to what was found in Ref. 15. A
cross-stream view of the optimal perturbations correspond-
ing to the outer peak is reported in Fig. 3. The optimal initial
condition consists in counter-rotating streamwise vortices
filling the whole channel and inducing, optimally amplified
streamwise velocity streaks of spanwise alternating signs,
each streak filling half channel depth. The structures associ-
ated with the secondary peaks also consist in optimal initial
vortices and final streaks and are in very good agreement
with previous results15 and are not reported here.

V. SCALING WITH THE REYNOLDS NUMBER

A. Scaling of the maximum growth

From Fig. 2�b�, it is seen that the data obtained at differ-
ent Reynolds numbers and corresponding to the secondary
peak collapse on a single curve if they are scaled in inner
units and the Reynolds number is sufficiently large �roughly
larger than Re��4000 according to our computations�. This
is consistent with what was found by del Álamo and
Jiménez,15 even if the precise values of the peak slightly
differ. In particular, the maximum growth Gmax

�inn�=2.6 �less
than the �3.5 found in Ref. 15� is obtained for 	+=0.0683,
corresponding to a spanwise wavelength of �z

+=92 wall
units. The time tmax

+ = tmaxu�
2
/� at which the maximum growth

is attained roughly ranges from 19 to 16 slightly decreasing
with Re�. The fact that the maximum growth corresponding
to inner scaling structures is almost independent of Re� has
been qualitatively explained in Ref. 15 by showing that the
Reynolds number typical of these most amplified inner struc-
tures is close to constant and very low �of the order of ten�.

The primary peak Gmax
�out� is attained, for the considered set

of Re�, at 	h=1.5707 corresponding to an optimal spanwise
wavelength �z=4h �a value slightly larger than the �3h
value found in Refs. 12 and 15�. The maximum energy
growth is of the order of ten and increases with Re� �see Fig.
2�. In the laminar channel flow case the maximum energy
growth scales with the square of the Reynolds number11,23,24

based on the center line velocity Ue, half-channel width h
and the molecular viscosity. In the present turbulent case,
therefore, we try a scaling with an “effective” turbulent Rey-
nolds number Re•=Ueh /�Tmax

based on the outer units h, Ue

and the maximum total viscosity �Tmax
=supy �T�y�. This

outer-unit-effective Reynolds number should not be confused
with the effective Reynolds number defined in Ref. 15 asso-
ciated with inner layer structures and used to interpret the
inner peak growth. For the considered mean flow profiles,
Re• ranges from 256 to 368 when Re� is between 500 and
20 000. The maximum energy amplification Gmax

�out� is seen to
scale approximately linearly with Re•. In Fig. 4�a� Gmax

�out� and
its fit 0.037 87 Re• are plotted versus Re�. The optimal di-
mensionless time tmaxUe /h at which the outer peak optimal is
attained increases with the Reynolds number scaling ap-
proximately like Re•

3/2 �see Fig. 4�b��. As presently there is
no theoretical support for these scalings, they should be con-
sidered only as empirical data fits. Furthermore, for large
Reynolds numbers �Re��10 000� the Gmax

�out� curve begins to
deviate from the linear behavior in Re• �and it deviates even
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FIG. 2. �Color online� Maximum growth Gmax of streamwise uniform
��=0� perturbations for the Reynolds numbers Re�=500, 1000, 2000, 5000,
10 000, and 20 000 as a function of the spanwise wavenumber in �a� outer
units 	h with a vertical dotted line at the optimal spanwise wavenumber
	h=1.5707 corresponding to a spanwise wavelength �z=4h, �b� inner units
	+ with a vertical dotted line at the optimal spanwise wavenumber
	+=0.0683, corresponding to a spanwise wavelength �z

+=92 wall units.
Same line styles as in Fig. 1.
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FIG. 3. Transverse view of the optimal solution corresponding to the pri-
mary peak ��z=4h� for Re�=5000: �a� represents the initial �v ,w� field
�t=0�; �b� represents the optimal streamwise velocity streaks obtained in
response to this perturbation at t= tmax. The black contours are high velocity
streaks u
0 and the gray contours are low velocity streaks u�0. The levels
are 0.2�+0.2�0.8.
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further for larger Re��. However, we have to remind that
the � and A constants used to fit the eddy viscosity and the
mean profile have been calibrated versus DNS at the low
Re�=2000, and therefore, probably no conclusions can be
drawn at very large Re�.

B. Scaling of the optimal perturbations

In Fig. 5, the wall normal velocity component v of the
initial vortices and the streamwise velocity component u of
the resulting streaks for each Reynolds number are plotted
versus, respectively, the wall normal inner �y+� and outer ���

coordinates. The optimal perturbations are seen to assume a
shape almost independent of the Re� when rescaled in proper
units, even if this independence is only qualitative, as re-
vealed by a close examination of Fig. 5. Regarding the inner
peak, it is observed that the maximum of the optimal initial
v, giving the distance from the wall of the optimal initial
counter-rotating vortices, is situated approximately at
y+=15, while the maximum of the optimal final u is situated
near y+=10. As for the outer peak, the maximum of the op-
timal initial v is located at the channel center �=0 while the
maximum of optimal outer streak is situated near the wall, at
	�	=0.80.

When replotted in inner variables, the amplitudes of the
outer optimal streaks collapse on a single curve in the log
and near wall regions where they are proportional to the
mean flow velocity profile U. This is shown in Fig. 6 where
the data already reported in Fig. 5�d� are replotted in inner
variables expressing uopt in wall units by using the factor
Ue

+�Re�� /Ue
+�5000� where Re�=5000 is taken as the reference

case. In the same figure, the Re�=5000 mean velocity profile
rescaled to have unit amplitude at the position of the maxi-
mum of the corresponding streak �where the streak ampli-
tude is also normalized to one� is also reported for compari-
son. This particular scaling of the optimal streaks allow them
to have very large amplitudes inside the near wall region,
just like the mean flow: at y+=10, they can still have half of
their maximum amplitude.

VI. SUMMARY AND DISCUSSION

The computation of the optimal energy growth in a tur-
bulent channel flow by del Álamo and Jiménez15 has been
repeated using a linear operator consistent with previous in-
vestigations of laminar18 or turbulent17 flows with variable
eddy viscosity.

As in Ref. 15, and consistently with the analogous analy-
sis of a turbulent boundary layer,16 it is found that: �a� only
streamwise elongated structures can be transiently amplified;
�b� the most amplified perturbations are streamwise uniform
and consist in streamwise vortices amplified into streamwise
streaks; �c� for sufficiently large Reynolds numbers two dif-
ferent peaks of the optimal growth Gmax��=0,	� are found,
scaling in inner and in outer units, respectively; �d� the maxi-
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nent of the optimal initial vortices and ��b� and �d�� of the u component of
the corresponding optimally amplified streaks for Re�=500, 1000, 2000,
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pure imaginary�. ��a� and �b�� Corresponding to the secondary peak in Fig.
2, displayed in wall units. ��c� and �d�� Corresponding to the main peak in
Fig. 2, displayed in outer units. Same line styles as in Fig. 1.
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mum growth associated with the inner peak does not depend
on Re� and is obtained for structures having a spanwise
wavelength �z

+�100; and �e� the time at which the optimals
are reached is roughly proportional to their spanwise wave-
length �z.

The optimal spanwise wavenumber ��+=92� and growth
�Gmax

�inn�=2.6� corresponding to the peak scaling in inner units
are slightly smaller that the ones found in Ref. 15, and the
difference must be attributed to the different linear operators
used in the analysis. The precise figures of these optimal
values should not, however, be overemphasized because of
the very crude assumptions made in their derivation and be-
cause their value slightly depends also on the choice of the
von Kármán � and A constants used for the mean flow fits.
The selected optimal �z

+ are anyway in very good accordance
with experimental results1,2 where the measured mean spac-
ing of near wall streaks ranges from 80 to 110 in an appar-
ently random way.

The most important difference with the results obtained
in Ref. 15 is that the maximum growth corresponding to the
outer peak increases with the Reynolds number. In a first
approximation, the outer optimal growth scales linearly with
an effective turbulent Reynolds number based on outer units,
similar to what is observed for the turbulent boundary
layer.16 The optimal growth is obtained for structures with a
spanwise wavelength �z�4h, larger than the laminar opti-
mal, which is also consistent with what is found in the tur-
bulent boundary layer case.16

The optimal vortices and streaks corresponding to the
two peaks are seen to be approximately self-similar in re-
spective inner and outer units. The optimal streaks corre-
sponding to the outer peak are, however, seen to scale also in
inner units in the viscous layer �roughly y+�150�, where
they are proportional to the local mean velocity. The outer
streaks have, therefore, non-negligible amplitudes in all the
viscous layer �they have up to 50% of their maximum am-
plitude near y+=10�.

The two combined facts that the outer peak Gmax
�out� in-

creases with Re� and that the associated optimal streaks
strongly protrude into the viscous layer, can be related to
experimental and numerical evidence of the influence of
outer scales into the inner layers. In particular, it has been
observed both in experiments25 and numerical simulations20

that the streamwise turbulent intensity urms in the outer layer
of wall flows does not collapse in wall units with increasing
Re� and that this lack of collapse grows with Re�.

Structures almost streamwise uniform ��x�h� with
�z�4h are observed in DNS of turbulent channel flows6

even if these structures are not the most energetic ones. The
observed most energetic structures are not streamwise uni-
form but have finite �x typical of the order of �5–10h �cor-
responding to �h�0.5–1� and a typical spacing �z�2–3h,
which corresponds well to the optimal �z that would be
found for those � �e.g., for �h=1 the optimal is �z=2.45�.
The fact that the streamwise uniform streaks are not the most
energetic ones probably means that these structures are not
self-sustained or are only weakly sustained because of a poor
feedback to reform the vortices or that they are just passively
forced by other self-sustained structures. This is because the

amplification of the streaks is only part of more complex
processes leading, e.g., to self-sustained cycles. To see these
potentially largely amplified structures, one must probably
artificially force them as recently done in the turbulent Cou-
ette flow.26 Forcing large amplitude streaks could be interest-
ing to manipulate the flow, as already shown in the case of
laminar boundary layers.27,28
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