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Abstract. Commonly, in accordance with a given risk-function of hypothesis testing, investigators
try to derive an optimal property of a test. This paper demonstrates that criteria for which a given
test is optimal can be declared by the structure of this test, and hence almost any reasonable test is
optimal. In order to establish this conclusion, the principle idea of the fundamental lemma of Neyman
and Pearson is applied to interpret the goodness of tests, as well as retrospective and sequential change
point detections are considered in the context of the proposed technique.Aside from that, the present
article evaluates a specific classification problem that corresponds to measurement error effects in
occupational medicine.

1 Introduction

Without loss of generality, we can say that the principle idea of the proof of the fundamental lemma
of Neyman and Pearson is based on the trivial inequality

(A−B)(I {A≥ B}−δ)≥ 0, (1.1)

for all A, B and δ ∈ [0,1] (I{·} is the indicator function). Thus, for example, if we would like to
classify i.i.d. observations {Xi, i = 1, . . . ,n} regarding the hypotheses:

H0 : X1 is from a density function f0 versus H1 : X1 is from a density function f1,
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then the likelihood ratio test (i.e. we should reject H0 iff ∏n
i=1 f1(Xi)/ f0(Xi)≥H, where H is a thresh-

old) is uniformly most powerful. This classical proposition directly follows from the expected value
under H0 of (1.1) with A = ∏n

i=1 f1(Xi)/ f0(Xi), B = H and δ that is considered as any decision rule
based on the observed sample. However, in the case when we have a given test-statistic Sn instead of
the likelihood ratio ∏n

i=1 f1(Xi)/ f0(Xi), the inequality (1.1) yields (Sn−H) I {Sn ≥ H} ≥ (Sn−H)δ,
for any decision rule δ ∈ [0,1]. Therefore, the test-rule Sn ≥H has also an optimal property following
the application of (1.1). The problem is to obtain a reasonable interpretation of the optimality.

The present paper proposes that the structure of any given retrospective or sequential test can
substantiate type-(1.1) inequalities that provide optimal properties of that test. Although this approach
can be applied easily to demonstrate an optimality of tests, presentation of that optimality in the
classical operating-characteristics (e.g. the power/significance level of tests) is the complicated issue.

In order to present the proposed methodology, different kinds of hypothesis testing are considered
in this article. Consequently, the sections of the paper are supplied with brief introductions related
to the corresponding problem statements. The paper proceeds as follows. Section 2 considers the
retrospective change point problem. This section demonstrates that the Shiryayev-Roberts approach
applied to the change point detection yields the averagely most powerful procedure. A sequential
testing is evaluated in Section 3. Here the focus on the inequality (1.1) leads us to a non-asymptotic
optimality of a well known sequential procedure, for which only an asymptotic result of optimality
has been proved in the literature. Section 4 introduces a specific classification problem. Although
the issue, which corresponds to limits of instrumentation of epidemiologic studies, has wide prac-
tical meaning, the stated problem has not been well addressed in the statistical literature. Section 5
mentions a remark and short conclusion of the paper.

2 Retrospective change point detection

The issues of the so-called retrospective (non-sequential) change point problem arise in experimental
and mathematical sciences (epidemiology, quality control, etc.). In this section we will focus on a
sequence of previously obtained independent observations in an attempt to detect whether they all
share the same distribution. Note that, commonly, the change point detection problem is evaluated
under assumption that if a change in the distribution did occur, then it is unique and the observations
after the change all have the same distribution, which differs from the distribution of the observations
before the change (e.g. Page, 1954; Sen and Srivastava, 1975; Gombay and Horvath, 1994; Harel et
al., 2008; Gurevich, 2006, 2007; Gurevich and Vexler, 2010).

Let X1, . . . ,Xn be independent observations with density functions g1, . . . ,gn, respectively. We want
to test the null hypothesis

H0 : gi = f0 for all i = 1, . . . ,n

versus the alternative

H1 : g1 = . . . = gν−1 = f0 6= gν = . . . = gn = f1, ν is unknown.

The maximum likelihood estimation of the change point parameter ν applied to the likelihood ratio
∏n

i=ν f1(Xi)/ f0(Xi) leads us to the well accepted in the change point literature CUSUM test (e.g. Page,
1954; Gurevich and Vexler, 2005): we should reject H0 iff

max
1≤k≤n

n

∏
i=k

f1(Xi)
f0(Xi)

≥ H,
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where H > 0 is a threshold. Alternatively, following Vexler (2006), the test based on the Shiryayev-
Roberts approach has the folowing form: we reject H0 iff

1
n

Rn ≡ 1
n

n

∑
k=1

n

∏
i=k

f1(Xi)
f0(Xi)

≥ H. (2.1)

Consider an optimal meaning of the test (2.1). Let Pk and Ek (k = 0, . . . ,n) respectively denote proba-
bility and expectation conditional on ν = k (the case k = 0 corresponds to H0). By virtue of (1.1) with
A = Rn/n and B = H, it follows that

(
1
n

Rn−H
)

I {Rn ≥ nH} ≥
(

1
n

Rn−H
)

δ. (2.2)

Without loss of generality, we assume that δ = 0,1 is any decision rule based on the observed sample
{Xi, i = 1, . . . ,n} such that if δ = 1, then we reject H0. Since

1
n

E0 (Rnδ) =
1
n

n

∑
k=1

E0

(
n

∏
i=k

f1(Xi)
f0(Xi)

δ

)
=

1
n

n

∑
k=1

∫
. . .

∫ n

∏
i=k

f1(xi)
f0(xi)

δ
n

∏
i=1

f0(xi)
n

∏
i=1

dxi

=
1
n

n

∑
k=1

∫
. . .

∫
I {δ = 1}

k−1

∏
i=1

f0(xi)
n

∏
i=k

f1(xi)
n

∏
i=1

dxi

=
1
n

n

∑
k=1

Pk {δ = 1} ,

derivation of H0-expectation of the left and right side of (2.2) directly provides the following propo-
sition.

Proposition 1. The test (2.1) is the averagely most powerful test, i.e.

1
n

n

∑
k=1

(
Pk

{
1
n

Rn ≥ H
}
−H P0

{
1
n

Rn ≥ H
})

≥ 1
n

n

∑
k=1

(Pk {δ declares rejection of H0}−H P0 {δ declares rejection of H0}) ,

for any decision rule δ ∈ [0,1] based on the observations {Xi, i = 1, . . . ,n}.

3 Sequential Shiryayev-Roberts change point detection

In this section, we suppose that independent observations X1, X2, . . . are surveyed sequentially. Let
X1, . . . ,Xν−1 be each distributed according to a density function f0, whereas Xν,Xν+1, . . . have a den-
sity function f1, where 1 ≤ ν ≤ ∞ is unknown. The case ν = ∞ corresponds to the situation when
all observations are distributed according to f0. In this case, while considering the notations P∞ and
E∞, we denote probability and expectation, respectively, when all observations are from the same
distribution. The formulation of sequential change point detection conforms to raising an alarm as
soon as possible after the change and to avoid false alarms. Efficient detection methods for this stated
problem are based on CUSUM and Shiryayev-Roberts stopping rules. The CUSUM policy is: we stop
sampling of Xs and report that a change in distribution of X has been detected at the first time n≥ 1
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that max1≤k≤n ∏n
i=k f1(Xi)/ f0(Xi) ≥ H, for a given threshold H. The Shiryaev-Roberts procedure is

defined by the stopping time

NH = inf{n≥ 1 : Rn ≥ H} , (3.1)

where the Shiryayev-Roberts test-statistic Rn is

Rn =
n

∑
k=1

n

∏
i=k

f1(Xi)
f0(Xi)

. (3.2)

The sequential CUSUM detection procedure has a non-asymptotic optimal property (Moustakides,
1986). At that, for the Shiryaev-Roberts procedure an asymptotic (as H → ∞) optimality has been
shown (Pollak, 1985). (Although Yakir (1997) attempted to prove a non-asymptotic optimality of the
Shiryaev-Roberts procedure, Mei (2006) has pointed out the inaccuracy of the Yakir’s proofs.) In
order to demonstrate optimality of the Shiryaev-Roberts detection scheme, Pollak (1985) has proved
an asymptotic closeness of the expected loss using a Bayes rule for the considered change problem
with a known prior distribution of ν to that using the rule NH . However, in the context of simple
application of the proposed methodology, the procedure (3.1) itself declares loss functions for which
that detection policy is optimal. That is, setting A = Rmin(NH ,n) and B = H in (1.1) leads to

(
Rmin(NH ,n)−H

)(
I
{

Rmin(NH ,n) ≥ H
}−δ

) ≥ 0, (3.3)

for all δ ∈ [0,1]. Since
{

Rmin(NH ,n) ≥ H
}

= {NH ≤ n},
(
Rmin(NH ,n)−H

)(
I
{

Rmin(NH ,n) ≥ H
}−δ

)

=
n

∑
k=1

(Rk−H)(1−δ) I {NH = k}+(Rn−H)(−δ) I {NH > n} ≥ 0. (3.4)

It is clear that (3.4) can be utilized to present an optimal property of the detection rule NH . However,
here, for simplicity, noting that every summand in the left side of the inequality (3.4) is non-negative,
we focus only on (Rn−H)(−δ) I {NH > n} ≥ 0. Thus, if τ is a stopping time (assuming that for
all k, the event {τ ≤ k} is measurable in the σ-algebra generated by X1, . . . ,Xk) and δ is defined by
δ = I {τ≤ n} then

E∞ [(H−Rn) I {τ≤ n,NH > n}] ≥ 0. (3.5)

By virtue of the definition (3.2), we obtain from (3.5) that

H (P∞ {NH > n}−P∞ {min(τ,NH) > n}) (3.6)

−
n

∑
k=1

(Pk {NH > n}−Pk {min(τ,NH) > n}) ≥ 0.

Therefore,

H
∞

∑
n=1

(P∞ {NH > n}−P∞ {min(τ,NH) > n}) (3.7)

−
∞

∑
n=1

n

∑
k=1

(Pk {NH > n}−Pk {min(τ,NH) > n}) ≥ 0,
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where
∞

∑
n=1

n

∑
k=1

(Pk {NH > n}−Pk {min(τ,NH) > n}) =
∞

∑
k=1

∞

∑
n=k

(Pk {NH > n} (3.8)

−Pk {min(τ,NH) > n}) =
∞

∑
k=1

(
Ek (NH − k +1)+−Ek (min(τ,NH)− k +1)+)

(a+ = aI {a≥ 0}). Let us summarize (3.7) with (3.8) in the next proposition.

Proposition 2. The Shiryaev-Roberts stopping time (3.1) satisfies

∞

∑
n=1

En (NH −n+1)+ +(−H E∞ (NH))

= min
τ

[
∞

∑
n=1

En (min(τ,NH)−n+1)+ +(−H E∞ (min(τ,NH)))

]
.

Note that, E∞(τ) corresponds to the average run length to false alarm of a stopping rule τ, and
hence small values of −E∞(τ) are privileged, whereas small values of En (τ−n+1)+ are also prefer-
able (because En (τ−n+1)+ relates to fallibility of the sequential detection in the case ν = n). Obvi-
ously, if ν < ∞ then min(τ,NH) detects that ν < ∞ faster than the stopping time NH .

4 Testing for Limit of Detection

The following problem of testing has been introduced by Vexler et al. (2006). Assume that indepen-
dent observations {Zi, i = 1, . . . ,n} satisfy

Zi = xiI{xi ≥ d}+ εiI{xi < d}, (4.1)

where xi,εi are some real random variables and d is a fixed (non-random) threshold value. For the sake
of clarity of exposition, we assume that {xi, i≥ 1} are i.i.d. random variables with a density function
fx, and {xi, i≥ 1} are independent of i.i.d. random variables {εi, i≥ 1}which have a density function
fε. We focus on the problem of testing for homogeneity of the observed sample, i.e.

H0 : Z1, . . . ,Zn are each distributed according to a density fx(u), versus (4.2)

H1 : for all i = 1, . . . ,n: Zi is distributed according to a density

fZ(u;d)≡ fx(u)I {u≥ d}+ fε(u)P{x1 < d} ; d is unknown.

An important application of this stated problem corresponds to the so-called limit of detection issue in
environmental epidemiology (Vexler et al. 2008). In this case, the model (4.1) and testing for (4.2) can
be considered in the context of exposure measurement bound by a limit of detection (e.g. Schisterman
et al., 2006). Frequently in epidemiological studies, data can include noise values that are effect of
exposure quantification compromised when the measurement process of a biomarker is subject to a
lower threshold.

In this section, we denote the probability and expectation for a given d as Pd and Ed , respectively.
The case d =−∞ corresponds to the hypothesis H0. In this case, P−∞ and E−∞ denote probability and
expectation, respectively, when we observe {Zi = xi, i = 1, . . . ,n}. When d is known, the classical
test-statistic for (4.2) is the likelihood ratio
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Λn(d) ≡
n

∏
i=1

fZ(Zi;d)
fx(Zi)

. (4.3)

In (4.2), the parameter d is unknown, and therefore we construct an estimator of d based on the
maximum likelihood method. To this end, we arrange the sequence {Zi, i = 1, . . . ,n} in decreasing
order: ∞ = Z(0:n) > Z(1:n) ≥ Z(2:n) ≥ . . .≥ Z(n:n) > Z(n+1:n) =−∞. Since

1 =
n+1

∑
k=1

I{Z(k−1:n) ≥ d > Z(k:n)} and hence Λn(d) =
n+1

∑
k=1

Λn(d)I{Z(k−1:n) ≥ d > Z(k:n)},

we define the maximum likelihood estimator of Λn(d) in the form Λn = maxk Λn(Z(k−1:n)) (d is es-
timated by Z(k−1:n), where k = argmaxl ∏i fZ(Zi;Z(l−1:n))). Now, following Section 2, we denote the
Shiryayev-Roberts test-statistic Rn = ∑k Λn(Z(k−1:n)). Formally, we obtain

Rn ≡
n

∑
k=2

Λn(Z(k−1:n))+
n

∏
i=1

fε(Zi)
fx(Zi)

=
n

∑
k=2

n

∏
i=1

fZ(Zi;Z(k−1:n))
fx(Zi)

+
n

∏
i=1

fε(Zi)
fx(Zi)

(4.4)

=
n

∑
k=2

n

∏
i=1

fZ(Zi;Zk−1)
fx(Zi)

+
n

∏
i=1

fε(Zi)
fx(Zi)

=
n

∑
k=2

Λn(Zk−1)+
n

∏
i=1

fε(Zi)
fx(Zi)

,

where without ties: Z(1:n) > Z(2:n) > .. . > Z(n:n) and ∑1
2 = 0. Note that, (4.4) is a very simple represen-

tation of the test statistic. Without additional assumptions dealing with bounds for the unknown d, the
application of the test statistic in the form of maxd̂ Λn(d̂) is a very complex problem, which strongly
depends on the type of density functions of the stated problem.

The proposed test for the problem (4.2) is: we fix a threshold H and reject H0 iff

1
n

Rn ≥ H (4.5)

(H can depend on n). Suppose δ = 0,1 is any decision rule based on the observed sample {Zi, i = 1, . . . ,n}
such that the event {δ = 1} recommends rejection of H0. Rewrite the inequality (1.1) in the form of

E−∞

(
1
n

Rn−H
)

I {Rn ≥ nH} ≥ E−∞

(
1
n

Rn−H
)

δ. (4.6)

In accordance with the definition (4.4), we consider

E−∞

(
n

∑
k=2

Λn(Zk−1)δ

)
=

n

∑
k=2

E−∞ (E−∞ (Λn(Zk−1)δ|Zk−1)) (4.7)

=
n

∑
k=2

E−∞


 fZ(Zk−1;Zk−1)

fx(Zk−1)

∫
. . .

∫ n

∏
i=1
i6=k−1

fZ(zi;Zk−1)
fx(zi)

δ

×
n

∏
i=1
i 6=k−1

fx(zi)
n

∏
i=1
i 6=k−1

dzi




=
n

∑
k=2

E−∞

(
fZ(Zk−1;Zk−1)

fx(Zk−1)
Pd=Zk−1 {δ = 1|Zk−1}

)
.

Since, under H0, Zi, i = 1, . . . ,n are independent identically P{x1 < u}-distributed random variables,
applying (4.7) to the inequality (4.6) directly yields the next proposition.
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Proposition 3. The test (4.5) is the averagely most powerful test with respect to distribution functions
of x1 and ε1, i.e.

1
n

n

∑
k=2

∫ fZ(u;u)
fx(u)

Pd=u

{
1
n

Rn ≥ H|Zk−1 = u
}

dP{x1 < u}+
1
n

Pd=∞

{
1
n

Rn ≥ H
}

−H Pd=−∞

{
1
n

Rn ≥ H
}

≥ 1
n

n

∑
k=2

∫ fZ(u;u)
fx(u)

Pd=u {δ declares rejection of H0|Zk−1 = u}dP{x1 < u}

+
1
n

Pd=∞ {δ declares rejection of H0}−H Pd=−∞ {δ declares rejection of H0} ,

for any decision rule δ ∈ [0,1] based on the observations {Zi, i = 1, . . . ,n}.

5 Remark and Conclusion

5.1 The case, where distributions of observations are known up to parameters.

In the context of statistical testing, when distribution functions of observations are known up to param-
eters, one of the approaches dealing with estimation of unknown parameters is the mixture technique.
To be specific, consider the change point problem introduced in Section 2. Assume that the density
function f1(u) ≡ f1(u;θ), where θ is the unknown parameter. In this case, we can transform the test
(2.1) in accordance with the mixture methodology (e.g. Krieger et al., 2003). That is, we have to
choose a prior Θ and pretend that θ∼Θ. Thus, the mixture Shiryayev-Roberts statistic has form

R(1)
n ≡ 1

n

n

∑
k=1

∫ n

∏
i=k

f1(Xi;u)
f0(Xi)

dΘ(u),

and hence the consequential transformation of the test (2.1) has the following property

1
n

n

∑
k=1

∫
Pν=k

{
1
n

R(1)
n ≥ H

∣∣∣{X j} j≥ν are from f1(Xi;u)
}

dΘ(u)

− H P0

{
1
n

R(1)
n ≥ H

}

≥ 1
n

n

∑
k=1

∫
Pν=k

{
δ declares rejection of H0

∣∣∣{X j} j≥ν are from f1(Xi;u)
}

dΘ(u)

− H P0 {δ declares rejection of H0} ,

for any decision rule δ ∈ [0,1] based on the observations {Xi, i = 1, . . . ,n}. In this case the optimality
formulated in Proposition 1 is integrated over values of the unknown parameter θ.

5.2 The case where one wishes to investigate the optimality of a given test in an unfixed context.

In this situation, inequalities similar to (1.1) can be obtained by focusing on the structure of a test.
These inequalities report an optimal property of the test. However, translation of that property in terms
of the quality of tests is the issue.
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