This article was downloaded by: [106.51.226.7] On: 09 August 2022, At: 12:55
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Management Science
MANAGEMENT

‘B

SCIENCE Publication details, including instructions for authors and subscription information:

v ' . http://pubsonline.informs.org

A A Note on Parametric Network Flows
:l'i ¥
' . l Edward Minieka,

To cite this article:
Edward Minieka, (1973) A Note on Parametric Network Flows. Management Science 19(5):585-587. https://doi.org/10.1287/

mnsc.19.5.585

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 1973 INFORMS

Please scroll down for article—it is on subsequent pages

informs.

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org



http://pubsonline.informs.org
https://doi.org/10.1287/mnsc.19.5.585
https://doi.org/10.1287/mnsc.19.5.585
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org

Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 12:55 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1973 as DOI: 10.1287/mnsc.19.5.585.

This article has not been copyedited or formatted. The final version may differ from this version.

MANAGEMENT SCIENCE
Vol. 19, No. 5, January, 1973
Printed in U.S A.

A NOTE ON PARAMETRIC NETWORK FLOWS*

EDWARD MINIEKA
University of Illinois, Chicago

In their paper [1], Doulliez and Rao present algorithms that solve two flow prob-
lems for a single source, multi-terminal network. The first problem that they solve is
the construction of a flow that maximizes the value of ¢, where the demand at each sink
is a nondecreasing, linear function of ¢. Given such a flow, the second problem that
they solve is the construction of a flow that maximizes the value of ¢t when the capac-
ity of an arc is reduced. This paper supplies a finiteness proof for the first algorithm
and sketches a finiteness proof for the second algorithm. The proofs are based on the
well-known fact that a network possesses only a finite number of different spanning
trees,

Let N be a finite, directed network with node set X and arc set E. Let s € X be
the unique source node in N, and let D C X be the set of sink nodes in N. Let &, denote
the capacity of arc ¢, and let 8, + a.t denote the demand at sink < at time ¢, where all
a, and B, are nonnegative and finite.

Time ¢ is said to be feasible if there exists a flow that exactly satisfies all demands
at time ¢,

In (1], an algorithm is presented that determines the maximum feasible time and
constructs a flow for this maximum time. This algorithm’s finiteness is asserted in a
lengthy argument that compares the algorithm to a finite, parametric dual-simplex
algorithm which can be suitably modified to avoid cycling. The algorithm does not
describe this modification.

The purpose of this paper is to present a slightly modified version of this algorithm
and a short, simple proof based on the finiteness property of spanning trees.

A spanning tree is a connected set of | X | — 1 arcs that is adjacent to all nodes in
X. It is well known that between any two nodes there is a unique path in a spanning
tree, i.e. a spanning tree contains no circuits.

LEmMA 1. Network N contains only a finile number of different spanning trees.

Proor. Network N has a finite number of arcs.
Let f, denote the flow in arc e. Arc e is called intermediate if 0 < f, < h,.

LEmMa 2. For any feasible time t, there exists a feasible flow whose intermediate arcs
are conlained in a spanning tree.

Proor. Given a feasible flow for time ¢, if the set of intermediate arcs contains no
circuits, then it can be contained in a spanning tree. Otherwise, the flow within a ecir-
cuit composed of intermediate arcs can be adjusted until one intermediate arc is elim-
inated without disturbing the conservation of flow at any node. This process can be
repeated until all circuits of intermediate nodes have been eliminated. Q.E.D.

Given a spanning tree T of network N, there exists a unique path from source s
to each sink ¢ € D.

Suppose only the ares in T can be used to send additional flow from s to D. If arc
a € T is directed away from s, then at most §, = h, — fu Z 0 additional flow units
can traverse arc a. If arc a € T is directed towards s, then at most f, additional flow
units can traverse arc a. For arc a € T, let 8, denote the number of flow units that

* Received February 1971; revised September 1971, May 1972.
585



Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 12:55 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1973 as DOI: 10.1287/mnsc.19.5.585.

This article has not been copyedited or formatted. The final version may differ from this version.

586 EDWARD MINIEKA

must traverse arc a if { is to be increased by one unit, i.e. let 8, equal the sum of the
a; for each 7 € D whose path from s to 7 traverses arc a. Clearly, arc a prohibits a time
increase of more than 8,/8, .

If arc a € T is removed from T, then X is partitioned into two sets X,' and X, .
Without loss of generality, suppose that s € X,'. Let X, be defined as the set of arcs
joining members of X,' and X,. Set X,, defined by tree T, is called a cocycle.! If all
arcs in X, that are directed from X,' to X’ carry a capacity flow, and if all other ares in
X, carry no flow, then X, is called a critical cocycle. If X, is a critical cocycle and 8, > 0,
then from the Max-Flow Min Cut Theorem, we know that no additional flow into the
sinks is possible. We can now present:

The Algorithm

Step 1. For any feasible time ¢, construct a flow whose intermediate arcs are contained
in some spanning tree. Call this spanning tree T'. Standard network flow techniques can
be used. Go to Step 2.

Step 2. For each arc a in tree T, calculate 3, and 5, . The maximum time increase
that arc a can tolerate is §,/8,, if B, # 0. Let M denote the set of ares a for which 4,/8,
is minimum. Denote this minimum possible time increase by At. If At = 0, go to Step 3.
Otherwise, adjust the flow along each arc ¢ € T by the amount 8,A¢, and let ¢ = ¢ + At.
Clearly, no arc in M remains intermediate. Go to Step 3.

Step 3. Let arc a be any arc in M such that no other arc in M lies in tree T between
arc a and source s. Arc a defines the cocycle X, . If cocycle X, is critical, stop. (A
critical cocycle has been found and the current value of ¢ is maximum.) Otherwise,
replace arc a in the tree by any arc in cocycle X, that allows flow. Return to Step 2.

Proor. Since the algorithm terminates with a critical cocycle, it terminates opti-
mally. Hence, only the finiteness of the algorithm remains to be proved.

If the algorithm does not terminate finitely, then some spanning tree, say T
must be generated infinitely many times, since, by Lemma 1, there are only a finite
number of distinct spanning trees.

Suppose spanning tree T generates an infinite number of positive increments of
time. After each of these positive increments of time (Step 2), no further increment is
possible without generating a different tree. At each of these times, the flow on the arcs
not in 7'y must assume a different set of values. There are only a finite number of dis-
tinet sets of values for the flow on the arcs not in 7}, since these arcs have either zero or
capacity flow. Hence, T can generate only a finite number of positive increments of
time.

Hence, if the algorithm does not terminate finitely, 77 must generate an infinite
sequence of time increments At equal to zero.

For the initial case in this sequence, let arc ¢ € T, be the arc that is removed from
tree T, . Then for tree T to be generated again, arc ¢ must return to the tree.

If arc a is directed away from the source s in tree T, then f, = h,. In order for arc
a to enter the tree again, arc @ must be directed toward the so' rce 8 with respect to
the cocycle at that step. This situation occurs only if at least on .irc on the path from
source s to node z is removed from the tree. But this removal is 1npossible, since only
members of M can be removed from the tree, and no arc in the path in tree T from
source s to node z is a member of M or can become a member of M in subsequent
iterations of Step 2. Thus tree T cannot be generated a second ti:ic without increasing
t, which is a contradiction.

1 A cocycle is any minimal set of arcs that disconnects the network.



Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 12:55 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1973 as DOI: 10.1287/mnsc.19.5.585.

This article has not been copyedited or formatted. The final version may differ from this version.

PARAMETRIC NETWORK FLOWS 587

A similar contradiction results when we assume that arc a is directed toward source s.
Q.E.D.

The algorithm in (1] does not specify which ares to choose from set /. This is the
only difference between the original algorithm and the algorithm presented here.

Given a flow for the maximum value of ¢, [1] presents an algorithm that constructs a
flow that maximizes ¢ when the capacity of a single arc is reduced. Unfortunately, the
finite termination of this algorithm, as presented in [1], depends upon an unspecified
method that will avoid cycling in the corresponding parametric dual-simplex algorithm.
This algorithm also replaces ares in the spanning tree until a maximum, feasible flow is
attained. If there is a choice of which arc to replace, the algorithm makes the choice
arbitrarily.

If M denotes the set of arcs that may be replaced, then by choosing any arc in M
such that no other arc in M lies between it and source s in the spanning tree, the
algorithm will terminate finitely.

The proof of the finite termination of this modified algorithm is similar to the finite
termination proofs of the first algorithm, i.e., it depends upon the finiteness of the
number of spanning trees of a network and upon the selection of only certain members
of M to enter the spanning tree.

Reference

1. DouLLiEz, P. J. aNp Rao, M, R., “Maximal Flow in a Multi-Terminal Network with Any One
Arc Subject to Failure,”” Management Science, Vol. 18, No. 1 (September 1971), pp. 48-58.



Downloaded from informs.org by [106.51.226.7] on 09 August 2022, at 12:55 . For personal use only, all rights reserved.

Published in Management Science on January 01, 1973 as DOI: 10.1287/mnsc.19.5.585.
This article has not been copyedited or formatted. The final version may differ from this version.

Copyright 1973, by INFORMS, all rights reserved. Copyright of Management Science
is the property of INFORMS: Institute for Operations Research and its content may not
be copied or emailed to multiple sites or posted to a listserv without the copyright
holder's express written permission. However, users may print, download, or email
articles for individual use.



