
A Note on Problem Difficulty Measures in
Black-Box Optimization: Classification,

Realizations and Predictability

Jun He j.he@cs.bham.ac.uk
School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, UK

Colin Reeves c.reeves@coventry.ac.uk
Department of Mathematical Sciences, Coventry University
Coventry CV1 5FB, UK

Carsten Witt cw01@ls2.cs.uni-dortmund.de
FB Informatik LS2, University of Dortmund, 44221 Dortmund, Germany

Xin Yao x.yao@cs.bham.ac.uk
School of Computer Science, University of Birmingham
Edgbaston, Birmingham B15 2TT, UK

Abstract
Various methods have been defined to measure the hardness of a fitness function for
evolutionary algorithms and other black-box heuristics. Examples include fitness land-
scape analysis, epistasis, fitness-distance correlations etc., all of which are relatively
easy to describe. However, they do not always correctly specify the hardness of the
function. Some measures are easy to implement, others are more intuitive and hard to
formalize.

This paper rigorously defines difficulty measures in black-box optimization and pro-
poses a classification. Different types of realizations of such measures are studied,
namely exact and approximate ones. For both types of realizations, it is proven that
predictive versions that run in polynomial time in general do not exist unless certain
complexity-theoretical assumptions are wrong.

Keywords
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1 Introduction

How can we characterize which fitness functions are easy for a given search heuristic
and which are not? This problem was thought to be a major challenge especially in
the field of evolutionary computation (Naudts and Kallel, 2000). It has attracted re-
searchers’ interests for over a decade, but as yet no satisfactory measure seems to have
been found.

In this paper, we identify two approaches to state the hardness of a problem for a
given search heuristic: the first one is to describe the characteristics of a fitness land-
scape, i. e., which characteristics of a fitness landscape make it hard for the heuristic
and which do not. The second is to define difficulty measures using the values of the
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fitness function. Often, these measures are estimated based on empirical observations
using stochastic/statistical approaches, e. g., samples from the search space.

The first approach emerged in the early studies of fitness landscapes, where iso-
lation, deception and multi-modality were linked to hard problems (Goldberg, 1989;
Deb and Goldberg, 1993; Horn and Goldberg, 1995; Vose and Liepins, 1991; Forrest and
Mitchell, 1993). Naudts and Kallel (2000) make the following observations: It is true
that a fitness landscape with isolation (needle-in-a-haystack) is hard for evolutionary
algorithms, but other characteristics may not be related too much to problem difficulty.
For example, Vose and Wright (1995) present a fully non-deceptive function which is
difficult for an evolutionary algorithm; Wilson (1991) proposes some deceptive func-
tions that can easily be solved by evolutionary algorithms; Horn and Goldberg con-
struct both an easy-to-solve multi-modal function (Horn and Goldberg, 1995), and a
unimodal function—the ‘long path’ problem (Horn et al., 1994)—which is difficult for
certain evolutionary algorithms, but easy for others (Rudolph, 1996).

The difficulty of fitness landscapes has also been described in terms of the con-
cepts of ruggedness and neutrality (Smith et al., 2002). Recently, the difficulty of fitness
landscapes has also been studied by means of fitness distributions and information
landscapes (Borenstein and Poli, 2004, 2005). The concepts summarized thus far have
in common that they provide intuitive explanations for the difficulty of a fitness land-
scape; however, they do not explicitly quantify difficulty as a measure, i. e., by numeri-
cal values. Thus they often evade a formal treatment.

As mentioned above, alternative approaches suggest that the difficulty of a prob-
lem should be computed by measures based on the fitness function and structure of
the search space. Examples include fitness- distance correlation (Jones and Forrest,
1995), correlation length and operator correlation (Manderick et al., 1991), fitness vari-
ance (Radcliffe and Surry, 1995), and epistasis variance (Davidor, 1991). Jansen (2001)
points out that the effort to compute exactly many of the measures, including epistasis
variance and fitness distance correlation, in general is exponential in the problem size
since the whole search space has to be explored. This immediately explains why, in
practice, a statistical approach is taken and these measures are estimated using sam-
ples from the search space. Hence, as in the case of statistics, where theoretical and
empirical versions of moments (e. g., mean values) exist, theoretical and empirical ver-
sions of difficulty measures should be carefully distinguished. This is also supported
by Naudts and Kallel (2000) who separate so-called exact and approximate values of
difficulty measures.

It is already known that even exact computations of many difficulty measures can
be very misleading. Jansen (2001) defines example functions that coincide exactly in
terms of their fitness distance correlation and epistasis variance whereas a simple evo-
lutionary algorithm exhibits a completely different behavior on these functions. Jansen
(2001) proves that the expected running time of this algorithm can vary from polyno-
mial to exponential values even if the difficulty measure does not change at all.

Approximate computations of difficulty measures—in particular epistasis vari-
ance and fitness-distance correlation—are studied by Naudts and Kallel (2000). They
demonstrate that using a sampling approach to compute average values of these mea-
sures can lead to very different outcomes compared to the exact values even if the prob-
lem is obviously easy for the considered search heuristic. This motivates the search for
more robust measures that are reliable at least with a high probability. Naudts and
Kallel (2000) also propose to define concepts of similarity for the behavior of search
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heuristics. In an extremely simple case, this could mean that polynomial and super-
polynomial running times of the search heuristics have to be distinguished.

Further Reeves (1999) points out inherent flaws in the common difficulty measures
such as epistasis variance, fitness-distance correlation and epistasis correlation. He
also raises an important theoretical question: can we know the difficulty of a problem
without exploring the whole universe (i. e., the fitness of all points in the search space)?
In other words, does a reliable and efficiently computable difficulty measure exist?

Based on the previous considerations and on Reeves’s question, this paper de-
scribes a classification of problem difficulty measures along with possible realizations
and then investigates their existence and predictability. The aim of the paper is to prove
rigorously that to find a useful difficulty measure in general will be impossible. The rest
of this paper is organized as follows. Section 2 provides the necessary definitions for
the study of general search heuristics. Section 3 proposes a definition of difficulty mea-
sures and a classification thereof. Section 4 shows the main result that it is too optimistic
to look for a general difficulty measure if we want to compute this measure efficiently.
Finally, conclusions are drawn in Section 5.

2 Black-Box Algorithms and Running Times

In this paper, we concentrate on black-box algorithms, a model that comprises many
randomized search heuristics including evolutionary algorithms. We follow the defin-
ition by Droste et al. (2006) but restrict ourselves to the cases of pseudo-boolean opti-
mization problems, i. e., functions f : {0, 1}n → R. Without loss of generality, the aim
is to maximize f .

Definition 1 (Black-Box Algorithm)

1. Choose some probability distribution p on {0, 1}n and produce a random search point x1 ∈
S according to p. Compute f(x1).

2. In step t, stop if the considered stopping criterion is fulfilled. Otherwise, depending on
I(t) = (x1, f(x1), . . . , xt−1, f(xt−1)), choose some probability distribution pI(t) on S
and produce a random search point xt ∈ S according to pI(t). Compute f(xt).

A crucial property of black-box algorithms is that they do not have any explicit
access to the function for which an optimum is sought. The only way to obtain infor-
mation on the unknown function is by evaluating different search points. This model
is called the black-box scenario and is well accepted in the theory of optimization. Usu-
ally, an evaluation of the fitness function is the most costly part in optimization. This
motivates the following definition.

Definition 2 (Running Time) Let a black-box algorithm α and a fitness func-
tion f : {0, 1}n → R be given. The running time Tα(f) of α on f is defined as the
smallest t such that f(xt) = max{f(x) | x ∈ {0, 1}n}.

The definition of the running time does not imply that the algorithm stops when
an optimum has been evaluated. This is a consequence of the black-box scenario, which
does not permit the algorithm to know that is has seen an optimum (except if the whole
search space has been explored).

Obviously, the running time of a black-box algorithm in general is a random vari-
able. Its expectation E(Tα(f)), called the expected running time of α on f , is usually
taken as a measure of difficulty of f for α. As usual in complexity theory (Papadim-
itriou and Steiglitz, 1998), running times that are polynomially bounded by the input
size are taken as easy.
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Definition 3 (α-hard/-easy) A function f : {0, 1}n → R is called easy w. r. t. α if E(Tα(f))
is bounded by a polynomial in n and hard otherwise.

A special case of a black-box algorithm is the famous (1+1) EA, which has already
been considered extensively with respect to its expected running time (Droste et al.,
2002; He and Yao, 2003). The (1+1) EA is especially easy to analyze since in each itera-
tion, exactly one f -evaluation takes place.

begin
generation counter t := 0;
choose x0 ∈ {0, 1}n uniformly at random;
while (stopping criterion does not hold) do

create y by flipping each bit of xt uniformly at random;
if f(y) ≥ f(xt) then xt+1 := y;

else xt+1 := xt;
fi
t := t + 1;

end
end

The running time of the (1+1) EA is by 1 larger than the number of iterations until
an optimal search point has been found. For general population-based evolutionary al-
gorithms, the number of generations until an optimum has been found is typically less
than the number of f -evaluations since several new individuals have to be considered
in a generation. However, if the population size is bounded by a polynomial, running
time and number of generations should differ only by a polynomial factor. The defini-
tion of hardness is invariant under such polynomial operations, and we can study the
number of generations instead of f -evaluations for population-based EAs if we prefer.

In the following, we consider the decision variant of the combinatorial optimiza-
tion problem called SAT: given a set of clauses C1, · · · , Cm on the Boolean variables
x1, · · · , xn, determine whether the formula C1 ∧ · · · ∧ Cm is satisfiable. The satisfi-
ability problem is chosen here since the problem is a paradigmatic problem in the
NP-completeness theory, and it is easy to polynomially transform the problem into
other well-known NP-complete problems (see Chapter 15 in Papadimitriou and Stei-
glitz, 1998). Although EAs can be applied to solve SAT problems (e. g., Gottlieb et al.,
2002; Michalewicz, 1996), here we do not try to carry out a theoretical running time
analysis of the (1+1) EA and similar black-box heuristics for the NP-hard SAT prob-
lem. Note, however, that it is nowadays possible to analyze the (1+1) EA on NP-hard
problems such as the partition problem (Witt, 2005).

The fitness function obtained from a SAT instance can be defined as the number
of satisfied clauses; however, there may be more “EA-friendly” functions, see Gottlieb
et al. (2002). In the following, we will instead use a very simple fitness function to show
negative results.

3 A Classification of Difficulty Measures and Their Realizations

As mentioned in the introduction, the goal is to define measures that reliably indicate
the difficulty of a function f for a black-box algorithm α, for example the (1+1) EA. If
such a measure exists, its values allow us to distinguish hard and easy inputs with re-
spect to the black-box algorithm. As an example, high epistasis is supposed to be linked
to hard problems. Using the definition of hardness from Definition 3, we propose the
following definition of a difficulty measure.
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Definition 4 (Difficulty Measure) Let a black-box algorithm α for the optimization of
pseudo-boolean functions f : {0, 1}n → R be given. A difficulty measure for α is a real-
valued function Mα on the set of pseudo-boolean functions where there exists a threshold func-
tion θ(n) such that

f is easy w. r. t. α ⇐⇒ Mα(f) ≤ θ(n). (1)

The running time τα(f) of α as a function of f and n is always a difficulty measure
since we can define θ(n) as the supremum of all p(n) such that p(n) is a polynomial in n.
However, this measure in general cannot be computed efficiently. We are interested in
efficient, i. e., polynomial, realizations of difficulty measures. As mentioned in the in-
troduction, it might be too ambitious to hope for efficient realizations that are always
exact. This does not exclude that an approximate computation of measures based on
samples from the search space is reliable at least with a high probability. We therefore
also define randomized realizations that are allowed to fail (e. g., by giving wrong an-
swers) with some hopefully small failure probability. In terms of complexity theory,
we allow two-sided errors. This is linked to the notion of BPP (bounded-error, proba-
bilistic, polynomial time) algorithms (Wegener, 2005). It is well known that the success
probability of such an algorithm should be a constant greater than 1/2, e. g., 3/4, for the
algorithm to be useful. Reusing the terminology of “exact vs. approximate” by Naudts
and Kallel (2000), this leads us to the following definitions.
Definition 5 (Realizations of Difficulty Measures) A deterministic algorithm that com-
putes a given difficulty measure Mα is called an exact realization. A randomized algorithm
that satisfies property (1) of Definition 4 with probability at least 3/4 is called an approximate
realization. Moreover, the realization is called predictive if its worst-case running time is
bounded by a polynomial in n.

It is by no means clear whether deterministic realizations always exist. If the black-
box algorithm is any Turing machine program, we might be faced with an undecidable
(i. e., non-recursive) problem since we have to decide uniformly for all problem sizes n
whether the running time is bounded by a polynomial. Things turn out to be easier if
we consider the simple (1+1) EA as optimizer. However, we will see that no predictive
exact and approximate realizations exist unless P = NP or BPP = NP. (The class BPP
consists of the problems for which a BPP algorithm exists.) This means that all functions
that are meant to be difficulty measures according to Definition 4 (including possible
improvements of epistasis variance etc.), do not allow predictive realizations.

Summarizing the above discussion, we get a classification of realizations of diffi-
culty measures in Figure 1. Note that for technical reasons, each exact realization is also
approximate according to Definition 5.

realizations

���������������

���������������

predictive

�������������

��

non-predictive

�� ��������������

exact ⊆ approximate exact ⊆ approximate

Figure 1: A classification of realizations of difficulty measures.
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4 Predictive Measures Probably Cannot Be Realized

In this section, we show that exact (resp. approximate) predictive measures in general
cannot be realized unless P = NP (resp. BPP = NP). This is achieved by a reduction
from the SAT problem introduced above.

We have the freedom to choose the black-box algorithm α for which we want to
consider a predictive difficulty measure. For simplicity, we take the (1+1) EA. The idea
is to transform satisfiable instances of the SAT problem into so-called almost-needle
functions. Such functions have value 0 on at least a (1 − 2−Ω(n))-fraction of its inputs
and value 1 on at least one input. It is easy to see that the expected running time of the
(1+1) EA on almost-needle functions is exponential (Wegener and Witt, 2005). On the
other hand, unsatisfiable instances will be transformed into functions that take value 0
on all inputs. We have to ascertain that such a transformation from the SAT problem is
possible in polynomial time. This means that we must be able to describe in polynomial
time an algorithm that computes the fitness function.

Let a SAT formula f with m clauses on n variables x1, . . . , xn be given. We start
from the fitness function s : {0, 1}n → R such that s(x) = 1 if x = (x1, . . . , xn) is a
satisfying assignment for f and s(x) = 0 otherwise. Obviously, an algorithm for s can
be described in polynomial time with respect to n and m. (A run of this algorithm, i. e.,
an evaluation of s, can also be made possible in polynomial time with respect to n, but
this does not matter in the black-box scenario.) The fitness function s is not necessarily
a needle-like function, it might happen that all assignments are satisfying. Therefore,
we transform s into an almost-needle function s′ using a padding technique as fol-
lows: We introduce n additional variables y1, . . . , yn and define the pseudo-boolean
function s′ : {0, 1}2n → R on the original and additional variables as follows:

s′(x1, . . . , xn, y1, . . . , yn) :=

{
1 if s(x1, . . . , xn) = 1 and y1 = · · · = yn = 1,
0 otherwise.

Obviously, also an algorithm for s′ can be described (and run, which again does not
matter) in polynomial time with respect to n and m. The function s′ is an almost-needle
function since it is 1 for at most 2n of 22n possible inputs. By definition, it differs from
the constant function 0 if and only if the formula f has a satisfying assignment. Hence,
the expected running time of the (1+1) EA on s′ is polynomial (in fact it is constant) if
and only if f is unsatisfiable.

Suppose now there is a predictive exact realization of a difficulty measure for the
(1+1) EA. In particular, we can apply this measure to s′ and check in polynomial time
whether the (1+1) EA will have polynomial or non-polynomial running time on s′. This
corresponds to deciding in polynomial time whether f is satisfiable. For general SAT
formulas, this is impossible unless P = NP (Wegener, 2005).

With respect to predictive approximate realizations of difficulty measures, the
same construction applies. If such a realization exists, it will with probability at
least 3/4 decide in polynomial time whether f is satisfiable. This is impossible unless
BPP = NP (Wegener, 2005).

We conclude that, from a worst-case perspective in terms of all possible fitness
functions, we cannot hope to build predictive difficulty measures. These can however
exist if the considered EA is applied to problems that do not have any hard instances.
This will be discussed briefly in the following section.
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5 Conclusions

This paper gives a rigorous definition of difficulty measures in black-box optimization.
Motivated by the distinction between theoretical and empirical versions of statistical
measures, we have classified realizations of difficulty measure into two types: namely
exact and approximate realizations. Assuming a worst-case perspective, the paper has
rigorously proven for both types that predictive versions, i. e., polynomial-time imple-
mentations, do not exist unless P = NP or BPP = NP.

An interesting question for future research is: Given an algorithm for the SAT
problem or other NP-hard problems, can we design a predictive measure for a broad
class of the corresponding fitness functions? Of course, if the class of fitness functions
includes only several special easy instances, e. g., in the SAT problem, any formula
without negated variables, the answer is yes. However, if the class is large and is a
non-trivial subset of the whole set of instances, the answer is still unclear.
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