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Abstract 
 

Affine vector fields of Bianchi type IV space-times are investigated using 
holonomy and decomposability, the rank of the 66×  Riemann matrix and direct 
integration technique. From the above study it follows that the Bianchi type IV 
space-times possesses only one case when it admits proper affine vector fields.  
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  1 INTRODUCTION  
 

In this paper we investigate the existance of proper affine vector fields in Bianchi type IV 
space-times using holonomy and decomposability, the rank of the 66×  Rieman matrix and 
direct integration techinques. Affine vector fields which preserve the geodesic structure and 
affine parameter of a space-time carries significant information and interest in the Einstein’s 
theory of general relativity. It is therefor important to study this symmetry. Throughout M  
represents a four dimensional, connected, Hausdorff space-time manifold with Lorentz metric g  
of signature (-, +, +, +). The curvature tensor associated with ,abg  through the Levi-Civita 
connection, is denoted in component form by .bcd

aR  The usual covariant, partial and Lie           
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derivatives are denoted by a semicolon, a comma and the symbol ,L  respectively. Round and 
square brackets denote the usual symmetrization and skew-symmetrization, respectively. Here, 
M  is assumed non-flat in the sense that the curvature tensor does not vanish over any 
non-empty open subset of .M   
 A vector field X  on M  is called an affine vector field if it satisfies  
     ,;

d
abcdbca XRX =           (1)  

where ).( ,,
e
bc

f
ed

e
bd

f
ce

f
dbc

f
cbdafbcd

f
afabcd gRgR ΓΓ−ΓΓ+Γ−Γ==  If one decomposes baX ;  on 

M  into its symmetric and skew-symmetric parts  

   ,
2
1

; ababba GHX +=  ),)(( ;; baabbaabbaab GGHXXH −==+≡    (2)  

then equation (1) is equivalent to  
   .0)()(0)( ;;; === c

cab
d

abcdcabcab XGiiiXRGiiHi       (3)  
The proof of the above equation (1) implies (3) or equations (3) implies (1) can be found in [2,3]. 
If ,,2 RccgH abab ∈=  then the vector field X  is called homothetic (and Killing if 0=c ). 
The vector field X  is said to be proper affine if it is not homothetic vector field and also X  is 
said to be proper homothetic vector field if it is not Killing vector field on M  [4].  

 
 

2 Affine Vector Fields  
 

Suppose that M  is a simple connected space-time. Then the holonomy group of M  is a 
connected Lie subgroup of the idenity component of the Lorentz group and is thus characterized 
by its subalgebra in the Lorentz algebra. These have been labeled into fifteen types 151 RR −  [1]. 
It follows from [4] that the only such space-times which could admit proper affine vector fields 
are those which admit nowhere zero covariantly constant second order symmetric tensor field 

.abH  This forces the holonomy type to be either ,2R  ,3R  ,4R  ,6R  ,7R  ,8R  ,10R  11R  or 

13R  [4]. A study of the affine vector fields for the above holonomy type can be found in [4]. It 
follows from [5] that the rank of the 66×  Riemann matrix of the above space-times which have 
holonomy type ,2R  ,3R  ,4R  ,6R  ,7R  ,8R  ,10R  11R  or 13R  is at most three. Hence for 
studying affine vector fields we are interested in those cases when the rank of the 66×  
Riemann matrix is less than or equal to three.  

 
 

3 Main Results  
 

Consider the Bianchi type IV space-times in the usual coordinate system ),,,( zyxt  (labeled by 
),,,,( 3210 xxxx  respectively) with line element [6]  

( ) ( ) ( )( ) ( )[ ] ( ) 2222222 2 dztCdxdytzAdytBtAzdxtAedtds z +++++−= −      (4)  
where )(),( tBtA  and )(tC  are no where zero functions of .t  The above space-time admits 
three linearly independent Killing vector fields which are  
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The non-zero independent components of the Riemann tensor are  

[ ] ,2
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1
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0101 α≡−−= − zeAAA
A

R &&&  [ ] ,2
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0102 α≡−−= − zezAAA
A

R &&&  
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0113 α≡−= − zeCACA
C

R &&  

( )[ ] ,22
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BC
R &&&&&  

( )[ ] ,22
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AB
R &&&&&&  

( )[ ] ,2
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R &&&&  

( ) ( )[ ] ,22322
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R &&&&&&&  
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4
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R &&   [ ] ,
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1
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B

R &&   

[ ] ,44
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22

1323 α≡++−= − zezACBAzzABAB
B

R &&   

[ ] .4483
4
1

6
222222

2323 α≡+++−−+−= − zezACBBCBAzBABzzABAB
B

R &&&&   

Writing the curvature tensor with components abcdR  at p  as a 66×  symmetric matrix [7] 
  

  

⎟
⎟
⎟
⎟
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⎞
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⎜
⎜
⎜
⎜
⎜

⎝

⎛
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613119

135108

412

123

111027

9871

00
00

0000
0000

00
00

αααα
αααα

αα
αα

αααα
αααα

abcdR           (6) 

 
As mentioned in section 2, the space-times which can admit proper affine vector fields have 
holonomy type ,2R  ,3R  ,4R  ,6R  ,7R  ,8R  ,10R  11R  or 13R  and the rank of the 66×  
Riemann matrix is at most three. Therefore we are only interested in those cases when the rank 
of the 66×  Riemann matrix is less than or equal to three. In general for any 66×  symmetric 
matrix there exist total fourty one possibilities when the rank of the 66×  symmetric matrix is 
less or equal to three, that is, twenty possibilities for rank three, fifteen possibilities for rank two 
and six possibilities for rank one. Suppose the rank of the 66×  Riemann matrix is one. Then  
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there is only one non-zero row or column in (6). If we set five rows or columns identically zero 
in (6) then there exist six possibilities when the rank of the 66×  Riemann matrix is one. All 
these six possibilities give us contradiction. For example consider the case when the rank of the 

66×  Riemann matrix is one i.e. ========= 1098765432 ααααααααα  
0131211 === ααα  and .01 ≠α  Subsituting the above information back in equation (6) one 

has 01 =α  which gives contradiction (here we assume that 01 ≠α ). So this case is not 
possible. Similarly if one proceeds further one finds that there exists only one possibility when 
the rank of the 66×  Riemann matrix is three or less which is: ,02 2 =− AAA &&&  ,0=− CACA &&  

,0=− BABA &&  ,02 2 =− BBB &&&  ,0=− CBCB &&  02 2 =−CCC &&&  and the rank of the 66×  
Riemann matrix is three.  
 In this case we have ),()( tAatB =  )()( tAbtC =  and ),()/()( tCbatB =  where 

}.0{\, Rba ∈  Equations ,02 2 =− AAA &&&  02 2 =− BBB &&&  and ⇒=− 02 2CCC &&&  
,)( 2

21 eteA +=  2
21 )( btbB +=  and ,)( 2

21 ftfC +=  where 
).0,0,0(,,,,, 111212121 ≠≠≠∈ fbeRffbbee  It follows from the above calculation that 

,11 bea =  ,11 feb =  22 bea =  and .22 feb =  The sub case when 01 =e  (which implies 
01 =b  and 01 =f ) will be considered latter. Here, the rank of the 66×  Riemann matrix is 

three and there exists a unique (up to a multiple) no where zero timelike vector field aa tt ,=  
solution of equation (3) and .0; ≠bat  The line element in this case takes the form  

( )[ ] }.2{)( 222222
21

22 dzbzdxdydyazdxeetedtds z ++++++−= −      (7)  
Substituting the above information into affine equations (1) and after tedious and lengthy 
calculation one finds that affine vector fields in this case are  

( ) ,,,, 1
3

31
2

21
1

4
0 cXcycXccyxXtcX =+=+−==       (8)  

.,,, 4321 Rcccc ∈  One can write the above equation (8) after subtracting the killing vector fields 
as  

( ).0,0,0,tX =              (9)  
Clearly, in this case the above space-times (7) admit proper affine vector field.  
 Now consider the sub case when .01 =e  The above space-time (10) becomes  

( )[ ] }.2{ 222222
2

22 dzbzdxdydyazdxeedtds z +++++−= −    (10)  
The above space-time is 1+3 decomposable and belongs to curavture class C. In this sub case 
there exists a nowhere zero timelike vector field aa tt ,=  such that .0; =bat  From the Ricci 

identity .0=abcd
a tR  Affine vector fields in this case [4] are  

  ,)( 54 X
t

ctcX ′+
∂
∂

+=              (11)  

where Rcc ∈54 ,  and X ′  is a homothetic vector field in the induced geometry on each of the 
three dimensional submanifolds of constant .t  The completion of this sub case needs to find a 
homothetic vector fields in the induced geometry of the submanifolds of constant .t  The 
induced metric αβg  (where 3,2,1, =βα ) with non zero components is given by  

( ) .,,, 2
233

222
222

22
212

22
211 begeazegezegeeg zzz =+=== −−−        (12)  
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A vector field X ′  is a homothetic vector field if it satisfies ,2 αβαβ φ ggLX =′  for all 

,3,2,1, =βα where .R∈φ  One can expand the homothetic equation and using (12) to get  
,2

1,
1
1,

3 φ−=−− XzXX              (13)  

( ) ( ) ,221 2
2,

1
2,

2
1,

21
1,

3 zzXXXazzXXz φ=+++++−         (14)  

,02
3,

21
3,

23
1, =++ −− XezXebX zz             (15)  

( ) ( ) ( ),22
2,

21
2,

32 azXazXzXazz +=+++−− φ         (16)  

( ) ,02
3,

221
3,

23
2, =+++ −− XeazXezXb zz           (17)  

.3
3, φ=X                 (18)  

Equation (18) gives ),,(13 yxEzX += φ  where ),(1 yxE  is a function of integration. Multiply 
equation (15) with z  and subtracting from equation (17) and using the above value of 3X  and 
upon integration we get  

 ( ) ),,(),(),( 22112 yxEdzeyxEyxzE
a
bX z

yx +−= ∫   

where ),(2 yxE  is a function of integration. Substituting the above information in equation (15) 
and upon integration one has  

[ ] [ ] ),,(),(33),(233
6

31221321 yxEyxEzzeyxEzza
a
bX y

z
x ++−++−=   

where ),(3 yxE  is a function of integration. In order to determine homothetic vector field we 
need to calculate ),,(1 yxE  ),(2 yxE  and ).,(3 yxE  If one proceeds further one finds that 

0=φ  which implies that no proper homothetic vector field exists in the induced geometry of the 
submanifolds of constant .t  Hence homothetic vector fields are Killing vector fields which are  

( ) ,,, 1
3

31
2

21
1 cXcycXccyxX =+=+−=           (19)  

where .,, 321 Rccc ∈  Affine vector fields in this case are (using equation (19) in (11)) given in 
equation (8). Clearly, in this case the above space-times (10) admit proper affine vector field.  
 
 
SUMMARY  
 
In this paper an attempt is made to explore all the possibilities when the Bianchi type IV 
space-times admit proper affine vector fields. An approach is adopted to study proper affine 
vector fields in the above space-times using holonomy and decomposability, the rank of the 

66×  Riemann matrix and direct integration technique. From the above study there exists only 
one case when the above space-times (4) admit proper affine vector fields. These space-times are 
(7) and (10). Proper affine vector field is given in equation (9).  
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