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Abstract. Several approaches generalizing association rules to fuzzy as-
sociation rules have been proposed so far. While the formal specification
of fuzzy associations is more or less straightforward, the evaluation of
such rules by means of appropriate quality measures assumes an under-
standing of the semantic meaning of a fuzzy rule. In this respect, most
existing proposals can be considered ad-hoc to some extent. In this paper,
we suggest a theoretical basis of fuzzy association rules by generalizing
the classification of the data stored in a database into positive, negative,
and irrelevant examples of a rule.

1 Introduction

Association rules provide a means for representing dependencies between at-
tributes in databases. Typically, an association involves two sets, A and B, of
so-called items (binary features). Then, the intended meaning of a (binary) rule
A ⇀ B is that a data record stored in the database that contains the set of
items A is likely to contain the items B as well. Example: If a data record is a
purchase, the association {paper, envelopes} ⇀ {stamps} suggests that a pur-
chase containing paper and envelopes is likely to contain stamps as well. Several
efficient algorithms for mining association rules in large databases have already
been devised [1, 18].

A generalization of binary association rules is motivated by the fact that a
database is usually not restricted to binary attributes but also contains attributes
with values ranging on (completely) ordered scales, such as cardinal or ordinal
attributes. In quantitative association rules, attribute values are specified by
means of subsets which are typically intervals. Example: “Employees at the age
of 30 to 40 have incomes between $50,000 and $70,000”.

The use of fuzzy sets in connection with association rules – as with data min-
ing in general [17] – has recently been motivated by several authors (e.g. [3, 6, 7,
16]). Moving from set-based (interval-based) to fuzzy associations is formally ac-
complished by replacing sets (intervals) by fuzzy sets (fuzzy intervals). Still, the
evaluation of fuzzy associations through appropriate quality measures, notably
the well-known support and confidence measures, is more intricate. Especially, it
assumes an understanding of the semantics of a fuzzy rule. In this respect, many
existing proposals can be considered ad-hoc to some extent. Here, we suggest a



theoretical justification of existing measures by generalizing the classification of
stored data into positive, negative, and irrelevant examples of a rule.

By way of background, Section 2 reviews classical association rules, and Sec-
tion 3 gives a brief overview of existing approaches to fuzzy associations. The idea
of basing the support and confidence of a fuzzy association on a fuzzy partition
of examples is presented in Section 4.

2 Association Rules

Consider a set A = {a1, . . . , am} of items, and let a transaction (data record)
be a subset T ⊆ A. Let DX

.= {T ∈ D |X ⊆ T } denote the transactions in the
database D that contain the items X ⊆ A; the cardinality of this set is |DX | =
card(DX). In order to find “interesting” association rules in a database D, a
potential rule A ⇀ B is generally rated according to several criteria. For each
criterion an appropriate measure is defined, and none of these measures must
fall below a certain (user-defined) threshold. In common use are the following
measures: A measure of support defines the number of transactions in D that
contain both A and B:

supp(A ⇀ B) .= |DA∪B|. (1)

Support can also be defined by the proportion rather than the absolute number of
transactions, in which case (1) is divided by |D|. The confidence is the proportion
of correct applications of the rule:

conf(A ⇀ B) .=
|DA∪B|
|DA| . (2)

Further reasonable measures can be considered such as, e.g., the deviation (sig-
nificance) int(A ⇀ B) .= |DA∪B| · |DA|−1 − |DB| · |D|−1, expressing that A ⇀ B
is interesting only if the occurrence of A does indeed have a positive influence on
the occurrence of B. As can be seen, the support measure plays a central role. In
fact, all other measures can generally be derived from the support. For example,
the confidence of an association A ⇀ B is the support of that association divided
by the support of its antecedent, A.

Rather than looking at a transaction T as a subset of items, it can also be
seen as a sequence (x1, . . . , xm) of values of binary variables Xı with domain
DXı = {0, 1}, where xı = 1 if the ıth item, aı, is contained in T and xı = 0
otherwise.

Now, let X and Y be quantitative attributes (such as age or income) with
completely ordered domains DX and DY , respectively. Without loss of generality
we can assume that DX , DY ⊆ R, where R denotes the set of real numbers. Let
xT and yT denote, respectively, the values that X and Y take for the transaction
T . A quantitative, interval-based association rule A ⇀ B involving the variables
X and Y is then of the following form:

If X ∈ A = [x1, x2] then Y ∈ B = [y1, y2], (3)



where x1, x2 ∈ DX and y1, y2 ∈ DY . This approach can simply be generalized
to the case where X and Y are multi-dimensional variables and, hence, A and
B hyper-rectangles rather than intervals. Subsequently, we proceed from fixed
variables X and Y , and consider the database D as a collection of data points
(x, y) = (xT , yT ), i.e. as a projection of the original database to DX × DY .

Note that the above quality measures are applicable in the quantitative case
as well:

supp(A ⇀ B) = card
({(x, y) ∈ D |x ∈ A ∧ y ∈ B}) ,

conf(A ⇀ B) =
card

({(x, y) ∈ D |x ∈ A ∧ y ∈ B})

card
({(x, y) ∈ D |x ∈ A}) .

In fact, each interval A = [x1, x2] does again define a binary attribute XA(x)
defined by XA(x) = 1 if x ∈ A and 0 otherwise. In other words, each quantitative
attribute X is replaced by k binary attributes XAı such that DX ⊆ ⋃k

ı=1 Aı.

3 Fuzzy Association Rules

Replacing the sets (intervals) A and B in (3) by fuzzy sets (intervals) leads to
fuzzy (quantitative) association rules. Thus, a fuzzy association rule is under-
stood as a rule of the form A ⇀ B, where A and B are now fuzzy subsets rather
than crisp subsets of the domains DX and DY of variables X and Y , respectively.
In other words, a variable X is now replaced by a number of fuzzy attributes
rather than by a number of binary attributes.

The standard approach to generalizing the quality measures for fuzzy associ-
ation rules is to replace set-theoretic operations, namely Cartesian product and
cardinality, by corresponding fuzzy set-theoretic operations:

supp(A ⇀ B) .=
∑

(x,y)∈D

A(x) ⊗ B(y), (4)

conf(A ⇀ B) .=

∑
(x,y)∈D A(x) ⊗ B(y)∑

(x,y)∈D A(x)
, (5)

where ⊗ is a t-norm; the usual choice is ⊗ = min. Note that the support of
A ⇀ B can be expressed by the sum of the individual supports, provided by
tuples (x, y) ∈ D:

supp[x,y](A ⇀ B) = A(x) ⊗ B(y). (6)

According to (6), the tuple (x, y) supports A ⇀ B if both, x ∈ A and y ∈ B.
Let us mention the possibility of measuring the frequency (support) of a

fuzzy itemset A ∪ B by a fuzzy cardinality, i.e. a fuzzy number, rather than by
a single number [4, 9].

The support measure (6) is obviously in line with the conjunction-based
approach to modeling fuzzy rules, well-known from Mamdani-like fuzzy con-
trol systems. Taking into account the asymmetric nature of a rule, the use of



implication-based fuzzy rules and, hence, of implication operators in place of con-
junctions for the modeling of associations has been proposed by some authors
[5, 6, 13]. For example, the following type of measure was suggested in [13]:

supp[x,y](A ⇀ B) = A(x) ⊗ (
A(x)� B(y)

)
. (7)

As one advantage of taking the implicative nature of a rule into account, note
that (7) avoids the following questionable property of (4) and (5): Suppose that
attribute A is perfectly associated with attribute B, which means that A(x) =
B(y) for all tuples (x, y) ∈ D. Thus, one may find it natural that A ⇀ B has
full confidence. Yet, since α ⊗ α < α if ⊗ is not idempotent (i.e. ⊗ �= min), (5)
usually yields conf(A ⇀ B) < 1 [14]. (Note that (7) is equivalent to (6) with
minimum t-norm if ⊗ is continuous and � is the R-implication induced by ⊗.)

4 Fuzzy Partitions of Examples

The key idea of the approach as outlined in this section is to provide a sound basis
of fuzzy association rules by generalizing the classification of data into positive,
negative, and irrelevant examples of a rule. In fact, an set-based association rule
A ⇀ B partitions the database into three types of transactions, namely positive
examples S+ that verify the rule, negative examples S− that falsify the rule, and
irrelevant examples S±:

S+
.= {(x, y) |x ∈ A ∧ y ∈ B} (8)

S−
.= {(x, y) |x ∈ A ∧ y �∈ B} (9)

S±
.= {(x, y) |x �∈ A} (10)

The most important quality measures for association rules (support and confi-
dence) are expressed in a natural way in terms of the cardinality of the above
sets. Namely, the support is the number of positive examples, and the confidence
is the number of positive over the number of relevant examples:

supp(A ⇀ B) .= |S+|, conf(A ⇀ B) .= |S+| ·
( |S+| + |S−|

)−1

The basic question in connection with fuzzy association rules now concerns the
generalization of the partition (8–10). Clearly, if A and B are fuzzy sets rather
than ordinary sets, then S+, S−, and S± will be fuzzy sets as well. In other words,
a point (x, y) can be a positive (negative) example to some degree, and may also
be irrelevant to some extent. We denote by S+(x, y) the degree of membership
of the point (x, y) in the fuzzy set S+ of positive examples and employ the same
notation for S− and S±.

There are different ways to proceed since the logical specification of positive
and negative examples is not unique. In fact, the logical specification of irrelevant
examples via (x, y) ∈ S± ⇔ ¬ (x ∈ A) is actually clear, but there are different
options to characterize S+ and S−. A straightforward possibility is of course

(x, y) ∈ S+
.= (x ∈ A) ∧ (y ∈ B),

(x, y) ∈ S−
.= (x ∈ A) ∧ ¬(y ∈ B). (11)



Still, a viable alternative could be

(x, y) ∈ S+
.= (x ∈ A) ∧ (y ∈ B),

(x, y) ∈ S−
.= ¬((x ∈ A) ⇒ (y ∈ B)), (12)

where ⇒ is the standard logical (material) implication. Moreover, referring to
(7), one could think of

(x, y) ∈ S+
.= (x ∈ A) ∧ ((x ∈ A) ⇒ (y ∈ B)),

(x, y) ∈ S−
.= (x ∈ A) ∧ ¬((x ∈ A) ⇒ (y ∈ B)). (13)

When taking (11) and the standard negation α 	→ 1 − α as a point of de-
parture, our problem can be specified as follows: Find a generalized conjunction
(t-norm) ⊗ such that

S+(x, y) + S−(x, y) + S±(x, y) = 1 (14)

holds for all (x, y) ∈ DX × DY , where

S+(x, y) .= A(x) ⊗ B(y)
S−(x, y) .= A(x) ⊗ (1 − B(y))
S±(x, y) .= 1 − A(x)

(15)

From Alsina’s results in [2] it follows that the only t-norm solving this problem
is the product. In fact, Alsina even solves a somewhat more general problem,
seeking solutions (⊗,⊕, n) to the functional equation

(α ⊗ β) ⊕ (α ⊗ n(β)) = α

for all 0 ≤ α, β ≤ 1, where ⊕ is a t-conorm and n(·) a negation. However, as-
suming addition (that is the Lukasiewicz t-conorm) as a generalized conjunction
is clearly reasonable in our context of data mining, where we are basically inter-
ested in generalizing frequency information. Particularly, (14) guarantees that
|S+| + |S−| + |S±| = |D|, which is clearly a reasonable property.

It should be noted that questions of similar type have also been studied,
e.g., in fuzzy preference modeling, where the problem is to decompose a weak
(valued) preference relation into three parts: strict preference, indifference, and
incompatibility [10].

When taking (12) rather than (11) as a point of departure, the problem is to
find a generalized conjunction (t-norm) ⊗ and a generalized implication operator
� such that (14) holds with

S+(x, y) .= A(x) ⊗ B(y)
S−(x, y) .= 1 − (

A(x)� B(y)
)

S±(x, y) .= 1 − A(x)
(16)

Note that (14) in conjunction with (16) implies

α� β = (1 − α) + (α ⊗ β) (17)



for all 0 ≤ α, β ≤ 1 and, hence, suggests a definition of the implication � in
terms of the conjunction ⊗. In fact, (17) defines the QL-implication with t-
conorm (α, β) 	→ min{1, α + β} as a disjunction (0 ≤ (1 − α) + (α ⊗ β) ≤ 1
always holds since α ⊗ β ≤ α for any t-norm ⊗). Here are some examples of
standard conjunctions ⊗ together with induced implications:

⊗ �
min{α, β} min{1, 1 − α + β}
αβ 1 − α(1 − β)
max{α + β − 1, 0} max{1 − α, β}

The question concerning the operators ⊗ and � that can be chosen in (16)
can be stated as follows: For which t-norms ⊗ does (17) define a proper impli-
cation operator? Note that the boundary conditions α � 1 = 1 and 0 � β = 1
do hold for all 0 ≤ α, β ≤ 1. Apart from that, (17) is obviously increasing in β.
Thus, as a major point it remains to guarantee comonotonicity in α. (Of course,
apart from that further properties of � might be required.)

First of all, let us show that indeed not all t-norms are admissible, i.e. there
are t-norms ⊗ for which (17) is not monotone decreasing in α. In fact, a sim-
ple counter-example is the (weakly) drastic product (α ⊗ β

.= min{α, β} if
max{α, β} = 1 and 0 otherwise), for which (17) becomes

α� β =




1 if β = 1
β if α = 1

1 − α if α < 1
.

Besides, there are even continuous t-norms that violate the above monotonicity
condition. For instance, consider the Hamacher family [12] of t-norms:

α ⊗γ β
.=

αβ

γ + (1 − γ)(α + β − αβ)
, (18)

where γ is a non-negative parameter. With γ = 10, (17) yields 0.9 � 0.5 ≈
0.41 < 0.5 = 1� 0.5. Similar counter-examples can also be constructed for the
families of t-norms introduced by Yager, Schweizer-Sklar, and Dombi [15].

Note that the comonotonicity condition

(α ≤ α′) ⇒ 1 − α + (α ⊗ β) ≥ 1 − α′ + (α′ ⊗ β)

is equivalent to

(α ≤ α′) ⇒ (α′ ⊗ β) − (α ⊗ β) ≤ α′ − α. (19)

Thus, it follows that a t-norm ⊗ is admissible in (17) if it is a so-called copula.
In fact, the following result is stated as a theorem in [19]: A t-norm ⊗ is a
copula iff (19) holds. A related result concerns continuous Archimedean t-norms
in particular and shows that such t-norms are admissible if and only if their
additive generator is convex.



For many parameterized families of t-norms, the latter result makes it easy to
check whether or not a parameter is admissible. For instance, γ ≤ 1 is necessary
for the Hamacher family (18).

As a direct consequence of the above results one can prove
Proposition 1: The Lukasiewicz t-norm ⊗L : (α, β) 	→ max{α+β−1, 0} is the
smallest t-norm admissible in (17).
Proposition 2: For the family of Frank t-norms [11], parameterized through
ρ > 0 according to

⊗ρ : (α, β) 	→




min(α, β) if ρ = 0
αβ if ρ = 1
max{0, 1− α + β} if ρ = ∞
lnρ

(
1 + (ρα−1)(ρβ−1)

ρ−1

)
otherwise

,

(17) is always monotone decreasing in α.
A further interesting result concerns the possibility of combining admissible

t-norms into new admissible t-norms.
Proposition 3: The ordinal sum of admissible t-norms is again admissible.
Corollary 4: Each element of the family of t-norms

⊗γ : (α, β) 	→ αβ

max{α, β, γ} , 0 < γ ≤ 1 (20)

introduced by Dubois and Prade [8], is admissible in (17).
Finally, reconsider model (13). In conjunction with (14), we obtain

(α ⊗ β) + (α ⊗ ¬β) = α

with α = A(x) and β = A(x) � B(y). Thus, we can again refer to Alsina’s
result, showing that ⊗ should be the product. Apart from that, any implication
operator can be used. It should be noted, however, that some implications are
unacceptable when imposing further requirements. For example, the reasonable
property that S+(x, y) is upper-bounded by B(y), especially S+(x, y) = 0 if
B(y) = 0, is not satisfied by all operators.

5 Concluding Remarks

The approach outlined in this paper justifies the use of certain fuzzy logical op-
erators in connection with different types of support measures for fuzzy itemsets.
Particularly, the t-norm generalizing the logical conjunction should be either the
product (and not, as usually, the minimum!) or a so-called copula, depending on
how positive and negative negative examples are specified.

Since the membership of a tuple (x, y) in the fuzzy set of relevant examples
(the complement of S±) is A(x) in any case, our approach also justifies the
standard confidence measure (5).

Our results might appear not fully satisfactory since they still permit a rather
large class of support measures. Restricting this class further by assuming addi-
tional properties is hence an important topic of ongoing research.



References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Pro-
ceedings of the 20th Conference on VLDB, Santiago, Chile, 1994.

2. C. Alsina. On a family of connectives for fuzzy sets. Fuzzy Sets and Systems,
16:231–235, 1985.

3. Wai-Ho Au and K.C.C. Chan. An effective algorithm for discovering fuzzy rules
in relational databases. In Proceedings IEEE World Congress on Computational
Intelligence, pages 1314 –1319, 1998.

4. P. Bosc, D. Dubois, O. Pivert, and H. Prade. On fuzzy association rules based
on fuzzy cardinalities. In Proc. IEEE Int. Fuzzy Systems Conference, Melbourne,
2001.

5. P. Bosc and O. Pivert. On some fuzzy extensions of association rules. In
Proc. IFSA/NAFIPS-2001, Vancouver, Canada, 2001.

6. G. Chen, Q. Wei, and E.E. Kerre. Fuzzy data mining: Discovery of fuzzy generalized
association rules. In G. Bordogna and G. Pasi, editors, Recent Issues on Fuzzy
Databases. Springer-Verlag, 2000.

7. M. Delgado, D. Sanchez, and M.A. Vila. Acquisition of fuzzy association rules
from medical data. In S. Barro and R. Marin, editors, Fuzzy Logic in Medicine.
Physica Verlag, 2000.

8. D. Dubois and H. Prade. Fuzzy Sets and Systems: Theory and Applications. Aca-
demic Press, New York, 1980.

9. D. Dubois and H. Prade. Fuzzy sets in data summaries – outline of a new approach.
In Proceedings IPMU-2000, pages 1035–1040, Madrid, Spain, 2000.

10. J. Fodor and M. Roubens. Fuzzy Preference Modelling and Multicriteria Decision
Support. Kluwer, 1994.

11. M.J. Frank. On the simulataneous associativity of f(x, y) and x + y − f(x, y).
Aeq. Math., 19:194–226, 1979.

12. H. Hamacher. Über logische Aggregationen nichtbinär explizierter Entschei-
dungskriterien; Ein axiomatischer Beitrag zur normativen Entscheidungstheorie.
R.G. Fischer Verlag, 1978.
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