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A Note on Random Intensities and 
Conditional Survival bctions 

A n a t o l i  Y a s h i n  and E v a  A r j a s  

1. Intmduction 

Let t = ( t t ) t a  be a random process  and T a random time in some probability 

space. The intensity, o r  hazard r a t e ,  re la ted t o  the occurrence of T and given the  

observation of ti = It,, 0 5 s 5 t  1 ,  is  often identified a s  a limit of the form 

1 
X ( t , t ) = l i m - P ( t  < ~ ~ t + ~ l t k ;  T a t ]  . 

ArO A 
( 1  

Does such a definition mean tha t  the corresponding conditional survival func- 

tion, when t is  observed, can  be  obtained from the  "exponential formulas" 

Equality ( 2 )  is  often tacitly assumed in medical and epidemiological studies when 

dealing with survival analysis in the presence of observable influencing random fac- 

tors. I t  turns  out tha t  this formula does not always hold. 

The exponential formula can  be viewed as the  solution satisfying P ( T  2 0 )  = 1 

of a corresponding differential equation. Thus, when the re  is  no conditioning, and 

assuming absolute continuity of the distribution function F ( t )  = P ( T  5 t ) ,  t  2 0 ,  the  

formulas 

and 

express  a one-to-one correspondence between the hazard rate X and the distribu- 



tion function F. This has  a n  obvious extension t o  t he  case where conditioning is  on a 

fixed u-algebra, say,  Go involving t he  conditional distr ibution function 

pGO(t)  = P ( T  d t (Go)  and the  corresponding hazard rate [1,2,3]. Why, then, i s  i t  

t h a t  formulas such as (3a) and (3b) do  not  necessari ly hold f o r  meaningful hazard 

rates when the  conditioning is  "dynamically" on time dependent random fac tors?  

A f i r s t  observation i s  t ha t  knowledge of <; may direct ly  te l l  whether  f T  S t  { 

holds o r  not. In o t h e r  words, P(T s t 1 [@ may be  e i t h e r  0 or 1 ,  whereas typical  

t 
values of t he  function 1 - exp(- f h(s  ,<)cis) would b e  s t r i c t ly  between 0 and 1. A s  a 

0 

concre te  example, one could think t he  survival of a n  individual, assuming tha t  [ 

monitors t he  blood pressure .  A second and more formal problem with (2) is  t ha t  t h e  

left-hand side should be  defined f o r  a l l  sample points of t he  probabilist ic space  

while A(t ,<) in (1) is only partial ly defined (on f T  2 t 1). 

In o r d e r  t o  s e t t l e  these  questions in t h e  most convenient way w e  switch o v e r  to 

the  cur ren t ly  well-known and extremely flexible formalism involving counting 

processes  and t he i r  associated compensators [see e.g. Jacod [2] or Liptcer  and 

Shiryayev [3]. 

2. The Reaulta 

Let N = (Nt ) t M  with Nt = 1 1 be  t he  p rocess  which counts "one" at T. Let 

G = (Gt)tzo be t h e  observed history on  which the  assessment of the  T-related ha- 

z a rd  is  based, and define H = (Ht ) t by Ht = Gt V ufN,, s s t {. Clearly, if T i s  a 

G-stopping time, w e  have H = G.  Both G and H are assumed to satisfy "the usual 

conditions" regarding right-continuity and completeness [4]. 

It  i s  well known that ,  under  regular i ty  conditions, if G i s  t h e  <-generated histo- 

r y ,  h(t  ,<) of (1) satisfies t h e  requirement 

The process  (h(t  , t ) l l ~ * ~  j ) t M  is called the  stochastic H-intensity corresponding to 

T. In fact ,  (4) i s  then used direct ly  as t h e  definition of such a n  intensity, instead of 

s tar t ing from a limit such as (1). 



Let F = (Ft )t;rO be the process Ft = P ( T  5 t I Gt ). Clearly, F is the ordinary 

distribution function of T if G is trivial, while F = N if T is  a G-stopping time. In 

general F need not be monotone. I t  is easily verified, however, tha t  F is a G- 

submartingale. We denote the G-compensator of F by A, i.e., A = (At)tM is the 

unique increasing G-predictable process,  with A(0) = 0,  such tha t  the difference 

F - A  is a G-martingale (see, e.g. Jacod [Z] o r  Liptcer and Shiryayev [3]). Let N 

and H be as above, and denote by A = (%)td the H-compensator of N .  Here is the 

main result  of this paper:  

Theorem A h a s  the representation 

Proof. First observe that  this claim is trivial if T is a G-stopping time. In the 

general case where Gt c Ht , t r 0,  i t  is  enough to  prove that  (i) A is  H-predictable, 

and (ii) N-A is  a n  A-martingale. 

t 

W e  start with (i). The integrand of At ' ds is left-continuous and = J 0 1 -Fs- 

H-adapted, therefore A-predictable, while A is G-predictable (by definition) and 

therefore also A-predictable. The R-predictability of A follows. 

In o rde r  t o  prove (ii), denote f i r s t  m = N - A .  It  is clear that  E 1 mt 1 < m f o r  all 

t 2 0.  Therefore i t  remains to  show that  

holds f o r  s < t . We have 

The f i r s t  t e r m  on the right-hand side can be written as 

while the second term becomes 



Therefore,  (6) i s  equal t o  

However, h e r e  t h e  second t e r m  vanishes, because, by the  well-known proper t i es  of 

t he  compensator, 

W e  now show how this  theorem can  be  used in o u r  problem concerning t h e  ex- 

ponential formula. For  th i s  w e  need t h e  following two conditions: 

(C1): F = (Ft )tH, i s  absolutely continuous ; 

(C2): F i s  of finite variation . 

Under these  conditions we have A = F ,  the  theorem implies in an obvious way 

the  solution t o  o u r  problem. W e  have,  when denoting d 4  = h t d t ,  the  following 

result .  

Corollary. Suppose (a) and  (C2). Then, denoting 

the stochastic H-intensi ty  corresponding to T is  g iven  b y  A t  = Yt llTat 1 ,  2 2 0. 

Although the  proof i s  obvious from the  Theorem, some comments on this resul t  

should b e  helpful. First ly,  (7) i s  c lear ly  equivalent t o  

(assuming tha t  P ( T  > 0 1 Go) = 1).  The c ruc ia l  point h e r e  i s  not t h e  equivalence of 

(7) and (8). but t he  fact t h a t  Y = (Yt)tM, being multiplied by l l ~ , ~ ) ,  i s  t h e  H- 

intensity f o r  T. 



Secondly, (Cl)  is clearly necessary fo r  (7) t o  be a meaningful definition, and 

for  (8) to hold. However, (C2) may need a comment. Here is  a simple sufficient con- 

dition f o r  (C2): 

(C2'): For all t r 0 , P ( T  5 t I Gt)  = P ( T  St 1 G,) a s .  

The reason is t ha t  under (C2') F becomes monotone. (C2') postulates the  conditional 

independence between [ T  St I and G,, given by Gt.  Using the  terminology of Pitman 

and Speed (1973). one can say  tha t  T satisfying (C2') i s  a randomized G-stopping 

time. 

Notice t ha t  ou r  conditions fo r  (8) are actually quite subtle: If T i s  a G-stopping 

time, (C2') i s  clearly met; however, (Cl)  cannot then hold. In a sense,  therefore ,  w e  

must think of G ,  or of t ,  as information exogenous to the  actual counting process N. 

3. Conclusion 

Mathematical models based on counting processes and martingales have proved 

extremely useful in many applied fields, such as biostatistics, reliability theory,  and 

risk analysis. The m o s t  important asset of this approach is  i t s  flexibility combined 

with t he  powerful methods of t he  stochastic calculus. A s  this study shows, however, 

one should be very cautious when assuming tha t  well-known formulas, such as the  ex- 

ponential formula here ,  automatically have formally similar extensions. 

Lastly, a word about extending ou r  resul ts  to m o r e  general  point processes. 

Above, w e  only considered "the single point process" Nt = lITSt t 2 0. If there  

are m o r e  points, say  at (O<)T1 < T2 < - , w e  could easily switch into the  counting 

process  $ = j, t 2 0. Therefore N is  the sum of "single point processes", 
i PI 

and the  corresponding H-compensator is  automatically a sum of processes like (5). 

each corresponding to s o m e  par t icular  point Ti. A similar extension of the  Theorem 

holds fo r  marked point processes.  

On the o the r  hand, t he  Corollary does not s e e m  to generalize in a useful 

manner. The formal generalization of the  exponential formula would be 

however, the  left-hand side does not appea r  t o  have interesting interpretations.  
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