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A NOTE ON RANK-ONE OPERATORS

IN REFLEXIVE ALGEBRAS

CECELIA LAURIE AND W. E. LONGSTAFF

Abstract. It is shown that if the invariant subspace lattice of a reflexive algebra if,

acting on a separable Hubert space, is both commutative and completely distribu-

tive, then the algebra generated by the rank-one operators of tf is dense in ci is any of

the strong, weak, ultrastrong or ultraweak topologies. Some related density results

arc also obtained.

The main purpose of this note is to clarify the role of the rank-one operators in a

reflexive algebra with a (commutative) completely distributive invariant subspace

lattice. A complete lattice is completely distributive if it permits distribution of the

lattice operations over families of arbitrary cardinality (see below for a precise

definition). Every nest, i.e. every totally ordered subspace lattice, is completely

distributive. For a subspace lattice, the property of being completely distributive is

intimately related to the presence of rank-one operators in the associated reflexive

algebra. For a given reflexive algebra fc?, we will refer to the subalgebra generated by

the rank-one operators in tf as the rank-one subalgebra of tf. In [10] it was shown

that if the rank-one subalgebra of tf is strongly dense in tf then the lattice of

invariant subspaces of tf is completely distributive. In the converse direction, it was

known (see [9]) that the rank-one subalgebra of a reflexive algebra with completely

distributive invariant subspace lattice was big enough to determine the lattice and

the natural question to ask was: is it big enough to determine the algebra?

Specifically, is the rank-one subalgebra of a reflexive algebra with completely

distributive invariant subspace lattice strongly dense in the algebra? This was known

to be true for nest algebras [2] and also in the case where the underlying Hubert

space was finite-dimensional. Subsequently, Lambrou [7] showed that complete

distributivity of a subspace lattice implied a condition somewhat weaker than the

desired strong density. Here we show that the answer is affirmative if the additional

requirement of commutativity is imposed on the invariant subspace lattice. Some

related density results are obtained. Specifically, our main result is that if the

invariant subspace lattice of a reflexive algebra 6f, acting on a separable Hubert

space, is commutative and completely distributive, then the rank-one subalgebra of &

is dense in tf in any of the strong, weak, ultrastrong or ultraweak topologies. As a

consequence, we show that if the invariant subspace lattice of a reflexive algebra tf is

Received by the editors January 19, 1983. This paper was presented (by the first author) in the Special

Session of Operator Algebras in Operator Theory, Annual Meeting of the A.M.S., January 1983.

1980 Mathematics Subject Classification. Primary 47D25.

El983 American Mathematical Society

0002-9939/83 $1.00 + $.25 per page

293

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



294 CECELIA LAURIE AND W  E. LONGSTAFF

commutative, the density of any of a certain family of subsets of tf implies the

density of the rank-one subalgebra in tf.

Throughout this note all Hilbert spaces will be separable and complex. If £ is a

collection of (orthogonal) projections acting on a Hilbert space %, we let Alg £

denote the algebra of all (bounded linear) operators on % which leave invariant each

projection in £. If tf is a collection of operators on %, we let Lat 6f denote the lattice

of all projections on % which are left invariant by every operator in tf. The algebra tf

is said to be reflexive if Alg Lat 6f = 6f. A subspace lattice on % is a lattice of

projections acting on % which contains both 0 and I and is closed in the strong

operator topology. Every subspace lattice is complete in the sense that it is closed

under the formation of arbitrary intersections and arbitrary (closed linear) spans. A

subspace lattice is called commutative if it consists of mutually commuting projec-

tions. A semi-invariant projection P of 6f is a projection of the form P = E — F where

E, F E Lat éE and F *£ E. For any projection Q we let Q±= I — Q.

An abstract complete lattice is said to be completely distributive if the following

identity and its dual hold for arbitrary index sets:

I \ I \
A       V   EaA =    V        A E^(a)\.

ccŒA

There are many characterizations of complete distributivity. For an extensive

discussion, see [6]. For the characterization we will use, we need the following

definitions. For a subspace lattice £ and for M, L E £ define

M_= V {N\M^ N,N Et},    4, = A {M_\M^ L, M g£}.

(We use the conventions V^ = 0 and A<j> = 7.) It is easy to see that L '< L^, for

L G £. We will use the fact [9] that £ is completely distributive if and only if

L = Z'r for all L E £.

Proposition 1. Let tbe a completely distributive subspace lattice on a Hilbert space

%. Let P be a projection on % with the property that for every K E £, either K «£ P1-

or r —. A_. 1 nen r      U.

Proof. Let L = V {K E £: K *£ P±}. Then L E £ and L^P±. For K E £,

K ^ Px if and only if Tí ̂  L. Hence, for K E £, K ^ L implies that P < K (using

the given property). Since £ is completely distributive,

L = Ln = A {K_\K^L,K G £},

so P < L. Thus P < L < Px so P = 0.

Lemma 2. Let £ be a subspace lattice on % and let & = Alg £. Let "51 denote the

rank-one subalgebra ofâ. Then £ is completely distributive if and only if PtflP ¥= 0 for

every nonzero semi-invariant projection P of &.

Proof. First, suppose £ is completely distributive. We show that P<3iP ¥= 0 for

every nonzero (not necessarily semi-invariant) projection P. Let F be a projection
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and suppose P6ÄP = 0. We show that P has the property described in Proposition 1.

Let K E £ and suppose that K ^ P± . If K_= I, then certainly P =s K_. Suppose

K_i^ I. Let /G K% satisfy /G P±% and let e E K^X be nonzero. Then the

operator e ®/, defined by (e ®/)x = (x, e)f(x E Oí), belongs to ÍR [9, Lemma 3.1]

and since Pf =£ 0, we must have Pe — 0. Thus K^< Fx so P < K_. By Proposition
_

Conversely, assume that P6XP =£ 0 for every nonzero semi-invariant projection P

of tf. Let L E £ and suppose L =£ F*. Then L < L„, and F = L^ — L is a nonzero

semi-invariant projection of tf. By assumption, there exists a rank-one operator R in

tf such that (L„ - L)R(LJf — L) ¥= 0. This contradicts the fact that every rank-one

operator in tf maps L* into L (see the proof of Theorem 3.1 in [10]). Thus L — L^

for every L E £, so £ is completely distributive.

Theorem 3. Let £ be a commutative completely distributive subspace lattice on a

separable Hilbert space %. Then the rank-one subalgebra of Alg £ is dense in Alg £ in

any of the weak, strong, ultraweak, or ultrastrong topologies.

Proof. Ultraweak density follows from Lemma 2 and the following result [8,

Theorem 4.1]:

Let tf be a reflexive algebra on a separable Hilbert space with Lat if commutative.

Let 6f0 be an ideal in 6f such that Pß0P ¥= 0 for all nonzero semi-invariant

projections P of tf. Then the ultraweak closure of tf-0 is &.

Density in the other topologies follows once one is reminded that the ultrastrong

and ultraweak closures of convex sets of operators are the same.

For the study of commutative subspace lattices, there is available a very useful

tool: Arveson's spectral representation theorem. Let Jibea compact metric space,

let < be a reflexive and transitive relation on X whose graph G is a closed subset of

XXX, and let m he a finite Borel measure on X. A Borel subset S E X is said to be

increasing if x G 5 and x < y imply y E S. For each Borel subset S of X let Ps

denote the corresponding orthogonal projection acting on the Hilbert space % —

L2(X, m), i.e., PJ(x) = xs(x)f(x) for/G L2(X, m). Let t(X< ,m) = {PS\S is

an increasing Borel subset of X}. Arveson's theorem [1, Theorem 1.3] asserts that

every commutative subspace lattice acting on a separable Hilbert space is unitarily

equivalent to some t(X, < ,m). For £ = t(X, < ,m), there is a (measure theoretic)

characterization of complete distributivity involving G, the graph of *£ [5, Theorem

71:
A commutative subspace lattice £ = £(A", «£ ,m) is completely dis-

tributive if and only if, for a Borel set A with m(A) > 0, we have

mXm(A XADG)>0.

By an integral operator on L2(X, m) we will mean a bounded operator T for

which there exists a Borel measurable function k on XXX such that for any

/, g E L2(X, m) we have

_
(Tf, g) = fk(x, y)f(y) g(x) dm X m(x, y).
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Theorem 4. Let £ = £( A", < ,m) be a commutative subspace lattice. Suppose there

exists a subset 6£0 of integral operators in Alg £ which is dense in Alg £ in any of the

strong, weak, ultrastrong or ultraweak topologies. Then £ is completely distributive and

the rank-one subalgebra of Alg £ is dense in Alg £ in any of these topologies.

Proof. The last clause of the conclusion follows from Theorem 3 once we show

that £ is completely distributive. Assume we have a subset tf0 of Alg £ consisting of

integral operators which is dense in Alg £ in any of the mentioned topologies. This

implies that, for any nonzero projection P on % there exists T in 6f0 such that

PTP f= 0. (This follows since the density of 6f0 in Alg £ implies that there exists a net

{Tv} in tf0 such that F„ -> 7 and hence PTVP -> P =£ 0.) For any F G t?0 there is an

associated kernel function k. Using the facts that F G Alg £ and that an integral

operator on an L2 space is zero iff the kernel is zero a.e. [3, Theorem 8.1], we can

conclude that k lives on G a.e. following the proof of [1, Proposition 1.6.0].

Let A be a Borel set such that m(A) > 0 and let P be the projection corresponding

to multiplication by Xa- By tne previous paragraph there exists a F G tf0 such that

PTP ^ 0. Let k he the kernel function for F. There exist/, g E L2(X, m) which live

on A such that

0 t(Tf, g) = jk(x, y)f(y)~gJ7¡dm X m(x, y).

But   this  implies  that  m X m(A X A D G) > 0  since  k(x, y)  lives  on   G  and

f(y)g(x)lives on A X A. This in turn implies complete distributivity by [5, Theorem

7]-

Remarks. (1) Even though the subalgebra of finite rank operators in Alg £ may be

bigger than the rank-one subalgebra (see [4]), density of the finite ranks implies

density of the rank-one subalgebra.

(2) Theorem 4 can be thought of as giving a family of characterizations of

complete distributivity for complete subspace lattices.

(3) Theorem 4 does not hold for noncommutative subspace lattices. Lambrou [7]

gives an example of a lattice in which the subalgebra of the finite rank operators is

strongly dense but the lattice is not completely distributive.

Problem 1. It is still undecided whether complete distributivity of a noncommuta-

tive subspace lattice £ implies the density of the rank-one subalgebra in Alg £.

Problem 2. Let C denote the Schatten /»-class of compact operators. Theorem 4

says that, for commutative £, density of any of Cp (~l Alg £ (p < 2) in Alg £ implies

density of the rank-one subalgebra of Alg £. Does this hold for Cp D Alg t, p > 2,

or (of ultimate interest) does it hold for the subalgebra of compact operators in

Alg£?
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