
A NOTE ON REDUCED JORDAN ALGEBRAS

KEVIN MCCRIMMON1

In this paper we give short proofs of two of the main theorems con-

cerning reduced exceptional Jordan algebras A =H(C3, y): the Albert-

Jacobson Theorem that the Cayley coordinate algebra C is deter-

mined by A up to isomorphism, and the Springer Theorem that two

such algebras A, A' are isomorphic if and only if they have isomorphic

coordinate algebras and equivalent trace forms. We avoid using the

generic norm by working directly with the reduced idempotents. Our

proofs do not require that the algebras be exceptional, and are valid

for arbitrary reduced simple algebras.

1. Reduced idempotents. Throughout this paper, A will denote a

Jordan algebra with identity element 1 over a field <£ of characteristic

9^2. In this section we make no assumptions about the simplicity or

finite-dimensionality of A. Recall that an idempotent e is reduced

if Ai(e) = UeA=$e. We assume the reader is familiar with the op-

erators UX = 2LX—Lxi and the basic identities involving them (e.g. [3,

pp.  1072-1075]).

Lemma 1. Let e be a reduced idempotent in A, x = xi+xi/2+x0 (x< in

the Peirce space Ai(e)) an element with UeX=Xi=ae, U^x2=fie, TJ £c\/2

= ye for fi, 75^0. Then Uxe=fig, UXllie=yf where g, / are reduced

idempotents with/ orthogonal to e and g 0/ the/orm g = pe+y-f-(l — p)/

with p = a2fi~x, y = afi~1Xi/2 an element in Ax/2(e, /) satisfying y2

=p(l—p)(e+/) sincexi/2EAi/2(e,/) has x\/2=y(e+f).

Proof. Since UeUx(Bg) = UJJ#e= (UeX2)2=fi2e2^0, we see g^O,

and fi2g2 = (Uxe)2=UxUex2=fiUxe=fi2g shows g is an idempotent.

It is reduced since fi2UaA = Uu(X)eA = UxUeUxAEUx($e) =3?g. Re-

peating this argument for xx/2, we get UXl/2e=yf for f a reduced idem-

potent, which is orthogonal to e since UXll2Ai(e)EAo(e). Then

Uxe = a2Uee+2a{eexi/2} + UXll2e = a2e+axi/i+yf=fi{pe+y+(l-p)f}

since y=fi—a2 follows from fie= UeX2=a2e+ U^x\n = (a2+y)e. Since

x\n = Uex\,2+Ui^x/2=ye+UXine=y(e+f) and p(l-p) =a2yfi-2, we

have y2=p(l— p)(e+f). Since 2yf ■Xx/2 = 2xx/2- UXll2e = 2 {xi/2exi/2}

= 2{xi/2eye} =7x1/2, we have xiiiEAin(e)r\Aiii(f) =Ai,2(e, /).

The next lemma is a variant of a result of N. Jacobson [2, p. 82].
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If e is an idempotent, then c = 2e — 1 satisfies c2 = l, so Uc is an auto-

morphism of A of period two. This automorphism will be called the

Peirce reflection Se determined by e; 5e'acts as the identity 7 on the

Peirce spaces Aiie) and A0ie), and as —7 on ^4i/2(e).

Lemma 2. Let ei, ei be reduced idempotents in A. Then

(a) There is a p G4>, called the projection coefficient of ei and e2, such

that Ueiei=pei and f/e2ei=pe2.

(b) If p = 1, then e = \(ei +e2)2 is idempotent and the Peirce reflection

Se maps ei onto e2.

(c) If p = 0, then g = ei-(ei — e2) is idempotent and Sg maps ei onto

the reduced idempotent fi = ei- (ei — 2e2), which is orthogonal to e2.

(d) If p?^0, 1, there are reduced idempotents /, orthogonal to e»

(i = l, 2) with h = ei+fi=e2+f2 an idempotent such that for some

yEAiih) the element s = il—h) +y is invertible and Usei =pe2, Usfi =p/2.

Proof. We have Ueie}-=piei for some pt (i^j). Since p\ei= UPie}e2

= UV{ei)ese2=Ue1Ue2Ue1e2=pip2piei we have p2(pi—p2)=0; similarly

P2(P2— Pi)=0, so either pi—p2 = 0 or Pi=p2 = 0, and in either case

Pi=p2=p. We claim the subalgebra generated by ei, ei is 4>[ei, e2]

=$ei+$x+$e2, where

x = 2ei-e2       ei-x = pe< + \x       x2 = p(«i + x + e2).

Indeed, such an x has ei-x = 2ei-iei-ej) = Ueiej+e2-ej=pei+ei-ej,

by [3, p. 1073, (10)] and x2= Utle%+Utie\ + 2ei- Ue2d= pd+pe2

+ 2pei-e2.

If p = l, set e = \iei+e2+x), 2 = 5(^1 — £2), z2 = \iei+e2—x). Then we

see e2 = e, e-z = \z, e-z2 = 0. Thus e is an idempotent with zEAi/2ie),

z2EAa(e). Since ei=e+z+z2, e2 = e — z+z2, this shows Seei = e2.

If p = 0, set g = ei-iei — e2)=ei — ̂ x, fi = ei-(ei — 2e2)=ei — x. Then

x2 = 0, g2 = g, g-x = %x imply g is an idempotent with xEAi/2ig). Since

ei = g+ix, f\=g — ix, this shows Ssei=fi. Because Sg is an automor-

phism, we know/i is a reduced idempotent, and e2-/i = e2-ei — e2-x = 0.

If p5^0, 1, set Xi = x — 2pe, (i= 1, 2). Then ei-Xi = \xi, so XiEAmiei),

and x\=piei+ej—x), so Ueix2=pUeiiei+ej—x) =p(l — p)e,5^0. Apply-

ing Lemma 1, Z7I/,=p(l — p)ft where /,■ is a reduced idempotent

orthogonal to et such that XiG^4i/2(e», /,•) has x2=p(l —p)(e<+/,•). But

x\ = piei+e2-x)=x%, so ei+f\=e2+f2 = h. Also, (1—p)(e<+/,-) = p~'x2

= «»• + ey — x = ei — Xi — 2pe,- + ey, so ey = pe< + x,- + (1 — p)/,-.

Set y=p(ei-/i)+xi; then y2=p2(ei+/i)+p(l —p)(«i+/i) =ph, so y is

invertible in -4i(fe), and c7!/e1=p2ei+p(l — p)/i+pxi=pe2, Uvfi

= Uyih — ei)=y2—Uyei=pih — e2)=pf2. If s = (l—h)+y then 5 is in-

vertible in A and U3= Uy on ^4i(/f), so Usei=pe2, Usfi=pf2.
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2. Peirce quadratic forms. If e\, e2 are reduced orthogonal idem-

potents then the Peirce quadratic form Qei,e2 determined by ei and e2

is the generic norm of the Peirce subalgebra Ax(ex+e2) =&ex+A12

+$e2. Thus Q(axex+axi+a2e2) =axa2 — Qo(ax2) wherea\2 = Qo(a12)(ex+e2).

A similarity of Peirce quadratic forms Q — Qei,e2 in A and Q' = <2gie2 in

A' is a bijection 5 of Ax(ex+e2) onto A{ (ex+e2) satisfying <2'(>Sx)

= aQ(x) for all x£^4i(ci+e2) and such that Sei = atei for some nonzero

scalars <Tj, a2 (a = GxO~i)- The main source of similarities is the following

Lemma 3. Suppose ex, e2 are reduced orthogonal idempotents in A, and

similarly for fi, f2. If s is invertible and Usei = aifi (i=l, 2) then S=U,

is a similarity of Qei,e2 with Qti,t2 with ratio a — aia2.

Proof. Clearly U, is a similarity of 4>ei+$e2 onto $/i+$/2, with

ratio a, so it suffices to check it from ^1/2(^1, e2) to Ax/i(/i, fi). The

formula Us Uei,^A = U,Uv<.*-■>■)fi,v«-i)f A = UsU~l UflJ, U^A = U{„f2A

show that Us is a bijection of -4i/2(ei, e2) onto Ai/2(/i, /2). The com-

ponent of s2 in Ai(ei + e2) is Uei+e,s2 = c/pc-i) („,/,+«,,/,) £7,1

= Z78-1c7«,1/1+«,,/2c7s-1c78l = Ur1(a21/i+oi/2)=axex+a2ei, and hence for

aEAil2(ei, e2)EAi(ei+e2) we have (Usa)2=UsUas2=UeUaUei+e2s2

= U, Ua((Tiei + a2e2) = U, {ai Ue2a2 + a2 Ueta2} = Q0(a) Us {aie2 + a2ex}

= Qo(a) {aiai/i+o-ioi/i} =aQo(a)(/i+/2). Thus Qo(Usa)=aQo(a), and

Us is a similarity with ratio a.

Recall that two orthogonal idempotents ex, ei are connected if there

is an element yEAi/i(ei, e2) which is invertible in Ai(ei+e2).

Theorem 1. 1/ A is a Jordan algebra in which any two reduced

orthogonal idempotents are connected, then any two Peirce quadratic

forms in A are similar, and the similarity may be taken in the group

11(^4) generated by the Us/or s invertible.

Proof. We write Q~Q' if such a similarity exists; this defines an

equivalence relation. The connectivity assumption guarantees

(1) Qe!,e, ~ Qe%,ei    if «i -L e2 are orthogonal,

since there is an element y£^4i/2(ei, e2) with y2=a(ex+e2) for <r^0,

and s= (1— ex — e2)+y is invertible in A with Usei= Uye{= Uejy2=aej

(i^j), so we can apply the lemma. Using this same U, we see

(2) Qeo.e, ~ Qe0,e2    if e0 ± et -L e2

since Useo = e0, UBex=ae2.

We use this to establish the more general case

(3) Qet,e- ~ Qet.et    if e0  -L eu eo J- e2.
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Letp be the projection coefficient of ei and e2. If p = l, there is a Peirce

reflection, viz. the Se of Lemma 2 (eG4?[ei, e2] C^o(eo)), with Seei = e2,

Seea = eo, so Qe^.e^Qe,,^ by Lemma 3 (or directly, since Se is an auto-

morphism). If p=0 then Sgei=fi J-e2, Sge0 = eo so (?eo,eI~'(?e()./i~(?«o.«a

(where the last step follows from (2) since eo-L/i-Le2). If p?^0, 1,

there is UaEclliA) with Use0 = eo, Usei=pe2 and again Qea.e^Qe!l,e2 by

Lemma 3.

Finally, we turn to the general case:

(4) Qn.°t~Qh,h   Hei ±e2,fi ±f2.

Let p be the projection coefficient of ei and/i. If p = l, then SeSi=fi,

so Qe1,e2~Qs,l.se2 = Qfl,Se2~Qf1,f2 (using (3) for the last step). If p = 0

we have Sgei=gi±fi so Qei.e2^Qsel,se2 = Qgi.se2'^Qgijl'^Qsl,Ql'-^Qixj2

(using (3), (1), (3) for the last steps). If p?=0, 1 we have ei J-gi,/i A-h

and 77,Gil(-4) with Usei=pfu U,gi=phi, and hence Qe^e^^Qe^g,

~Qfi.h,~Q/i,f2 by (3), Lemma 3, and (3) again.

As an immediate corollary we have

Theorem 2 (Albert-Jacobson [l]). If two reduced simple Jordan

matrix algebras A=HiD„, y) and A' —HiD,[, 7') are isomorphic

(ra^2, D and D' composition algebras) then D and D' are isomorphic.

Proof. By simplicity, any two reduced orthogonal idempotents of

A (or A') are connected. Hence, by Theorem 1, any two Peirce

quadratic forms of A (or A') are similar. The isomorphism of A and

A' implies that for any Peirce quadratic form of A there is a similar

one of A'. Consequently, the Peirce quadratic forms of A are similar

to those of A'. Taking in A the diagonal idempotents en, e22, the cor-

responding Peirce quadratic form is the sum of a hyperbolic 2-dimen-

sional quadratic form and of a multiple of the norm form N of D.

Similarly in A'. Consequently, Witt's theorem implies that the norm

forms A and N' of D and D' are similar. Then D and D' are known

to be isomorphic (see [l]).

3. Reduced algebras of degree three. Throughout this section, we

will be concerned with reduced simple algebras 77(7?3, 7) of degree

three, D a composition algebra. Given a reduced idempotent ei, we

can write l—ei = e2+e%, where e2, e% are reduced orthogonal idem-

potents. The set of values QoiAa) = —Qe2,e,iA23) of Qo on AM is called

the norm class of ei, and is denoted by A(eO. By Witt's Theorem, it

is independent of the decomposition of 1—ei into reduced idem-

potents, since Q is nondegenerate on Aiil—ei) by simplicity. The

nomenclature is justified by
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(5) K(a) = yk\jN(D)    if et = en in T7(7>3, 7),

since Ajk = D[jk], x[jk]2=ypyjN(x). From this we immediately see

(6) K(e.) = K(ej)K(ek)    if 1 = a + ey + ek.

Theorem 3. 1/ A, A' are reduced simple Jordan algebras 0/ degree

three with equivalent trace forms and isomorphic coordinate algebras,

then any two reduced idempotents e, e' with the same norm class K(e)

= K(e') may be mapped into each other under an isomorphism of A

onto A'.

Proof. Let 1 =ei+e2+e3, l'=e{ +e2 +e{ for et, ei reduced and

e = ex, e'=e{. By the Coordinatization Theorem [3, p. 1077] there are

isomorphisms A^H(D3, 7), A'^H(D3, y') mapping e„ el into the

diagonal idempotents en, e'ti; we may assume D = D'. Here 7= (1,72,73),

?' = (!', 7/, 7/), where K(e) =y3~1y2N(D) ^yi-'yiN(D) =K(e').

Since r(x[23], x[23]) = 27r172A(x) and r'(x[23]', x[23]')

= 2y3~1y2 N(x), the generic trace forms on 7J[23] and D[23]' are

equivalent, and this extends to an equivalence of V =^e{ +3?e2

-f-d>e3'+7?[23]' onto V=$ex+<I>e2+$>e3+D[23}. Since r and r' are

equivalent by hypothesis, Witt's Theorem furnishes us with an

equivalence of V'L =D[l2]'+D[l3]' onto F-L = 7)[l2]-|-7»[l3]. Since

r'(l [31]', 1 [31]') =27/, there must be an element w=x[2l]+y[31]

(x, yED) with t(u, u)=2{y2N(x)+y3N(y)} =2y3'. Then Ueiu2

=y3 ei^O, and by Lemma 1, Uuex = y3fx where/1 is a reduced idem-

potent orthogonal to ex (because uEAx/2(ex)) with uEAx/2(ex, fx) and

u2=yi (ei+fx). Then 1 = ex+/x+gi for gi reduced and K(gx) =y3N(D).

We already had K(ei) = K(e{) =7»_I7* N(D), hence K(f1)=K(e1)K{g1)

= y2 N(D) by (6). But this means that we can choose ux2EAx/2(ex, gx),

ui»EAi/i(ex, fx) with u\2 = yi-1(ex+gx), u\3 = y(-1(ex+fx), and by the

Coordinatization Theorem there is an isomorphism A=H(D3, y')

for7'=(l,72',73') sending ei—>e„, gi—»e^./i-*«w- Thus ^^T7(7>3, 7')

=A' under isomorphisms mapping e=gi<->e[1<->e1' —e'.

Corollary. Two reduced idempotents e, e' in a reduced simple Jor-

dan algebra 0/ degree three are conjugate under the group 0/ automor-

phisms i/ and only if K(e) =K(e').

Theorem 4 (Springer [4]). Two reduced simple Jordan algebras

0/ degree three are isomorphic if and only if they have isomorphic co-

ordinate algebras and equivalent trace forms.

Proof. The conditions are necessary by the Albert-Jacobson Theo-

rem. The previous theorem shows they will be sufficient if they allow

us to find reduced idempotents in A and A' with the same norm class.
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Let l'=e{+e{+e{ where e' = e{ has Kie')=y{~1yiNiD') and

A'=HiD{, 7') for 7' = (1, yi, yi). We must find eG-4 with A(e)

= Kie').

Choose a (temporary) coordinatization A=HiD3, 7) with l=ei

+e2+e3, 7 = (71, 72, 73) (to have complete symmetry among the

indices we do not assume 71 = 1). Trivially the trace forms r on

"Jei +<E>e2 +<be3 and t' on Qe{ + $e2 + Qe{ are equivalent, so if t and

r' are equivalent we can use Witt's Theorem again to obtain an equiv-

alence of 7?[12]+7?[13]+T?[23] with D'[l2]'+D'[l3]'+D'[23]'.

Since r'(l[23]', 1 [23]') =273,_172 , there is an element u=x[l2]

+y [23] +2 [31 ] with r(u, u)=2 {yr'yiNix) +yr1y2N(y) +7r1y3A(2)}

= 273'-172'-

We cannot have A(x) = N(y) = A(2) =0. First suppose that two of

the norms are zero; by symmetry we may assume A(x)=A(2)=0.

Then y31y2N(y)=yi~1y2 implies A(ei)=A(e'), and we may take

e = ei.

Suppose only one of the norms is zero, say A(y) =0. Then v =x[l2]

+z[3l] has t(v, v)=t(u, u) = 2yi~1y2 . Since A(x), A(s)?^0 we can

re-coordinatize A (keeping the same idempotents ei, e2, e3) in such a

way that v has the form v = 1 [2l] + l [3l] in 77(Z>3, 7) for some new

7 = (1, 72, 73). Then Ueiv2 = Jt(d, f)ei=73/_I72'ei=^0. By Lemma 1 we

have Uvei=y3~1y2fi where/1 is a reduced idempotent orthogonal to

ei with vEAi/2iei, fi) and v2=y3~1y2' (ei+/i). This implies gi = l—ei

-/1 has Kigi) =7s'-172 NiD) =yt1y2 A(77') = A(e'), and we may take

e=gi-

Finally, suppose none of the norms is zero. Then again we can

re-coordinatize A in such a way that ra has the form w = l[2l] + l[3l]

+x[23] in 77(7?3, 7) for some new 7 = (1, 72, 73) and some new

xED. Here t(u, u)=2{y2+yz+y2yiN(y)} =2yi~1y2 for y=y3lx

(and 72+73^0). Since y is invertible in D, set v = ei-r-72"1y_1 [21 ]

+ 7a~1y~1[3l] = ei + via. Then Ueiv2 = /3ei, Ueiv\/2 = 5ex for 0 = 1

+ 72-2727V(y-1)+73-273A(y-1) = 73,-1Y2'{7273A(y)}-1 ^0 and S

= (72_1+7r1)A(y-1) = (72+73) {yi'YzNiy)}-19^0. Applying Lemma 1,

Uvei=figi and UVl/2ei = Sfi for ex, /1, gi reduced, ex and /1 orthogonal,

and giG-4i(ci+/i). Thus there is another reduced idempotent hi

orthogonal to gi with gi+/ti=«i+/i. If 1 = ex+fi+ki= gi+hi+ki then

ki is reduced. Now v is invertible in ^4i(ei+/i) because v2 — v = 5(ei+/i),

so s = ki+v is invertible in A, and Uski = ki, Usei=Uvei=(3gi. From

Lemma 3 we see Ua is an equivalence of Qkugi with /SG>ll(il. Thus

Kih) =0Kifi). Applying (6) twice, Kigi) =Kih)Kiki) = /3A(/,)A(&i)
= $Kiei). But/3A(e1)=73'-172' {y2y3Niy)}->yr'y2NiD) =yriyj NiD)

= A(e'), and again we can take e = gi.

Remark. As the referee has kindly pointed out, most of the above
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results can be extended to the case of algebras A, A' over different

ground fields <£, <!>'. In Theorem 2, an isomorphism of A and A' as

simple rings induces an isomorphism of their centers $ and <£', and

the argument shows that the coordinate algebras D and D' are semi-

linearly isomorphic. In Theorem 3, if A and A' have trace forms

which are semilinearly equivalent and coordinate algebras which are

semilinearly isomorphic relative to some given isomorphism of the

ground fields <1> and 4>', and e, e' are reduced idempotents whose norm

classes correspond under the field isomorphism, then e and e' may be

mapped into each other under a semilinear isomorphism of A onto A'.

Then Theorem 4 says that two reduced simple Jordan algebras of

degree 3 are (ring) isomorphic if and only if they have trace forms

which are semilinearly equivalent and coordinate algebras which are

semilinearly isomorphic relative to a fixed isomorphism of the ground

fields.
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