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Abstract

In this note we examine and study relations in zero-adjusted models.
Relations for reliability measures in the adjusted and unadjusted models
are established and appropriate comparisons including the relative error
are presented. The relative error is shown to be a decreasing function
of the counts. Some inequalities and comparisons for weighted zero-
adjusted models are established.

Mathematics Subject Classifications: 62N05, 60B10
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1 Introduction

Statistical analysis for data that are often overdispersed are of tremendous
practical importance. Mixed distributions including Poisson, negative bino-
mial, Neyman Type A, to mention just a few distributions have been widely
used to model overdispersed data. Areas of application include road safety
(Miaou, 1994), patent application (Crepon and Duguet, 1997), medical con-
sultations (Gurma, 1997), manufacturing defects (Lambert, 1992) to mention
just a few. Lambert (1992) presented results on zero-inflated Poisson regres-
sion model. Heilborn (1994) discussed the zero altered Poisson and negative
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binomial regression models. Gupta et al (1996) investigated the zero-inflated
form of the generalized Poisson distribution. Mullahy (1997) showed that
the probability of a zero in the Poisson distribution is less than the proba-
bility of zero in mixed Poisson distribution with the same mean. Weighted
distributions occur frequently in research related to reliability, bio-medicine,
ecology, and several other areas. These distributions arise naturally as a result
of observations generated from a stochastic process and recorded with some
weight function. Length-biased distributions are weighted distributions (see
Patil and Rao (1978)). A variety of methods have been developed for the es-
timation of the survival function, density function and other related functions
under length-biased sampling. Weighted distributions in general and length-
biased distributions in particular, are of tremendous practical importance in
a wide variety of areas in probability and statistics. Length-biased sampling
is widely used for the collection and analysis of wildlife data (Patil and Rao,
1978), fiber data (Daniels, 1942) or lifetime data (Zelen and Feinleib, 1969,
Gupta and Keating, 1985).

In this paper, relations and stochastic inequalities for zero-adjusted models
are established when the adjusted random variable is length-biased. Reliability
measures of zero-adjusted and unadjusted models are compared and inequali-
ties as well as bounds are presented. In section 2, models and utility notions
are presented. In section 3, relations for reliability measures for zero-adjusted
models are given. Section 4 deals with length-biased zero-adjusted and unad-
justed models. Some relations and stochastic inequalities are presented. An
application is presented in section 5. Concluding remarks are given in section
6.

2 Some Basic Results and Utility Notions

Let X be a non-negative random variable with distribution function F and
probability density function (pdf) f. The weighted random variable XW has a
survival or reliability function given by

F W (x) =
EF [W (X)|X > x]

EF [W (X)]
F (x). (1)

Note that the survival or reliability function can also be expressed as

F W (x) = F (x){W (x) + MF (x)}/E(W (X)), (2)

where MF (x) =
∫∞
x {F (t)W ′(t)dt}/F (x), assuming W (x)F (x) −→ 0 as x −→

∞. The corresponding pdf of the weighted random variable XW is

fW (x) = W (x)f(x)/E(W (X)), (3)
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x ≥ 0, where 0 < E(W (X) < ∞. We give some basic and important defini-
tions.

Definition 2.1 Let X and Y be two random variables with distribution
functions F and G respectively. We say F <st G, stochastically ordered, if
F (x) ≤ G(x), for x ≥ 0 or equivalently, for any increasing function Φ(x),

E(Φ(X)) ≤ E(Φ(Y )). (4)

Definition 2.2 . A distribution function F is said to have increasing (de-
creasing) hazard rate or failure rate on [0,∞), denoted by IHR (DHR) or IFR
(DFR), if F (0−) = 0, F (0) < 1 and P (X > x + t|X > t) = F (x + t)/F (t) is
decreasing (increasing) in t ≥ 0 for each x > 0.

Let X be a discrete random variable, preferably discrete lifetime of a com-
ponent and fX(k) the probability that failure will occur at time k. It is well
known that the discrete failure rate function is given by

γX(k) =
F X(k − 1) − FX(k)

FX(k)
, k = 1, 2, .... . (5)

Roy and Gupta (1999), (see Xie et al (2002)) have shown that for discrete

distributions, the definition of the hazard function γX(k) = fX(k)

F (k)
, the cumu-

lative hazard function HX(k) = −ln(FX(k)), k ≥ 1, and related reliability
functions can be problematic. This problem arises from the fact that the dis-

crete failure rate function γX(k) = FX(k−1)−F X(k)

F X(k)
has the interpretation of a

probability while it is known that the failure rate is not a probability in the
continuous case. The discrete failure rate function is bounded and cannot be
convex. These authors discussed other definitions of discrete failure rate and
related functions that address this problem.

The corresponding cumulative hazard function and mean residual life func-
tions are

HX(k) =
∞∑

s=1

hX(s), (6)

and

MX(k) = 1 +
∞∑

s=k+1

exp(−
∞∑

j=k+1

hX(j)) (7)

respectively. We examine the definition of the discrete failure rate given by
Roy and Gupta (1999) (see also Xie et al (2002)) and how it relates to the
zero-adjusted and the length-biased adjusted models.

Definition 2.3 Let FX be a discrete distribution function. The hazard rate
function denoted by hX(x) is

hX(k) = ln

(
F X(k − 1)

F X(k)

)
,
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for k ≥ 1.
Note that hX(k) is not bounded, and γX(k) = 1 − exp{−hX(k)}, where

γX(k) = F X(k−1)−F X(k)

FX(k)
, is the traditional definition of the hazard rate function

of a discrete random variable X.
Now we turn to the zero-inflated distribution. Suppose the discrete random

variable X with mass concentrated on the integers is such that X = 0 is
observed with lower (higher) probability than the assumed model, then the
distribution of the adjusted random variable Y , for 0 ≤ ω < 1, is given by

P (Y = y) =

{
ω + (1 − ω)P (X = 0) if y = 0,
(1 − ω)P (X = y) if y > 0.

The distribution function of Y is given via the random variable X as

FY (k) = FX(k) + ωFX(k), (8)

where F X(k) = 1 − FX(k), k > 0, is the survival or reliability function of X.

Example: Ridout, Demetrio and Hinde (1998) presented a particular ex-
ample in which the number of roots, Y, produced by a plant cutting during a
period in a propagation environment has a zero-inflated Poisson (ZIP) distri-
bution given by

P (Y = y) =

{
ω + (1 − ω)exp(−λ) if y = 0,
(1 − ω)exp(−λ)λy/y! if y > 0.

In this case, the mixture distribution that arises when a proportion ω, 0 ≤ ω <
1, of the cuttings are unable to root, is given by the ZIP distribution, where the
remainder of the Poison parameter takes a value λ. For the ZIP distribution,
the mean and variance are given by E(Y ) = (1−ω)λ and V ar(Y ) = μ+ ω

1−ω
μ2

respectively, where μ = (1 − ω)λ.

3 Relations for Reliability Measures

In this section, we establish stochastic inequalities, bounds and relations for re-
liability measures for the zero-adjusted and unadjusted models. From equation
(8), it follows immediately that

F Y (k) > FX(k), (9)

if ω < 0, and

F Y (k) ≤ F X(k), (10)
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if ω ≥ 0. Using the traditional definition of the hazard rate function of X we
have γF (k) = fX(k)/FX(k) = γX(k), k ≥ 1, and

γY (0) = γX(0) + ω(1 − γX(0)). (11)

Clearly, γY (0) ≥ γX(0) if ω ≥ 0 and γY (0) < γX(0) if ω < 0. The corresponding
survival function of Y is given by

F Y (k) = (1 − ω)FX(k), (12)

k ≥ 0. The mean residual life function (MRLF) of Y is given by

MY (k) = (F Y (k))−1
∞∑

s=k

F Y (s)

= ((1 − ω)FX(k))−1
∞∑

s=k

(1 − ω)FX(s)

= (F X(k))−1
∞∑

s=k

FX(s)

= MX(k), (13)

for k ≥ 1. For k = 0, we have

MY (0) = (F Y (0))−1
∞∑

s=0

F Y (s) =
∞∑

s=0

F Y (s) = (1 − ω)MX(0),

where

MX(0) = (FX(0))−1
∞∑

s=0

FX(s). (14)

It follows therefore that MY (0) ≥ MX(0) if ω ≥ 0, and MY (0) < MX(0) if
ω < 0.

Note that from definition 2.3, the hazard rate function of Y is

hY (k) = ln

(
(1 − ω)FX(k − 1)

(1 − ω)FX(k)

)
= hX(k),

and F X(k) = FX(k − 1)exp(−hX(k), k ≥ 1. For the zero-adjusted random
variable Y, we have F Y (k) = (1 − ω)FX(k − 1)exp(−hX(k)), for k = 1, 2, .....
The cumulative hazard rate function is given by

HY (k) =
k∑

s=1

hY (s) =
k∑

s=1

hX(s) = HX(k). (15)
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4 Zero-Adjusted Length-Biased Distributions

In this section, some inequalities and reliability results for the zero-adjusted
length-biased distributions and related measures are established. The length-
biased probability function is a weighted probability density function with
weight function W (k) = k. The corresponding length-biased reliability func-
tion is given by

F Xl
(k) = F X(k)VF (k)/μ

F
, (16)

where VF (k) = E(X|X > k) is the vitality function and μ
F

= μ =
∑∞

k=0 F (k).
Note that fX(k)/fXl

(k) = μ
F
/k −→ 0 as k → ∞. That is, the length-biased

distribution FXl
has a heavier tail than the original distribution FX . Indeed

FXl
(k) ≥ F (k) (17)

for all k ≥ 0. The length-biased probability function is given by fXl
(k) =

kfX(k)/μ, for k ≥ 0, where μ
F

= μ =
∑∞

k=0 F (k) < ∞. The probability
function for the adjusted random variable Y is given by

fY (k) =

{
ω + (1 − ω)fXl

(0) if k = 0,
(1 − ω)fXl

(k) if k > 0.

The length-biased distribution function of the zero-adjusted random variable
Y is given by

FY (k) = ω +
1 − ω

μ

k∑
s=1

sP (X = s). (18)

The reliability or survival function of the adjusted random variable is

F Y (k) = (1 − ω)FX(k)(k + MX(k))/μ, (19)

and the corresponding hazard rate function is given by

γY (k) =

{
ωγX(k)

k+MX(k)
if k > 0,

ω if k = 0.

Using definition 2.3, the hazard rate function of Y is given by

hY (k) = ln(

(
F Y (k − 1)

F Y (k)

)
(20)

= ln

(
(1 − ω)FX(k − 1)(k − 1 + MX(k − 1))/μ

(1 − ω)FX(k)(k + MX(k))/μ

)

= ln

(
FX(k − 1)(k − 1 + MX(k − 1))

FX(k)(k + MX(k))

)
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= ln

⎛
⎜⎜⎝FX(k − 1)(k − 1 +

∑∞
s=k−1

FX(s)

F (k−1)
)

F X(k)(k +
∑∞

s=k
FX(s)

F X(k)
)

⎞
⎟⎟⎠

= ln

(
(k − 1)FX(k − 1) +

∑∞
s=k−1 FX(s)

kF X(k) +
∑∞

s=k F X(s)

)

= ln

(
(k − 1)FX(k − 1) + F X(k − 1) +

∑∞
s=k F X(s)

kFX(k) +
∑∞

s=k F X(s)

)

= ln

(
(k − 1)FX(k − 1) +

∑∞
s=k F X(s)

kF X(k) +
∑∞

s=k F X(s)

)

= hX(k), (21)

for k ≥ 1. We have the following results:

Theorem 4.1 Let Y and Xl be the zero-adjusted and length-biased random
variables respectively. The hazard rate functions γ(k) and h(k) are affected
only at the zero, that is

γY (k) = γXl
(k) and hY (k) = hXl

(k), (22)

for k ≥ 1.

Theorem 4.2 Let Y be the zero-adjusted random variable, then

lim
k→∞

(
F Y (k)

F X(k)

)
= 1 − ω. (23)

Proof: Note that
F Y (k)

FX(k)
=

FX(k) − ωFX(k)

FX(k)
.

Consequently for 0 ≤ ω < 1, we have F Y (k)

F X(k)
= 1 − ω.

Theorem 4.3 Let

δ(k) =
∣∣∣∣F Y (k) − F X(k)

F X(k)

∣∣∣∣, (24)

then δ(k + 1) = δ(k) for all k ≥ 0. Also

β(k) =

∣∣∣∣F Y (k) − FX(k)

FX(k)

∣∣∣∣, (25)

is a decreasing function of k.
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Proof: Note that

F Y (k) − F X(k)

FX(k)
=

F X(k) − ωFX(k) − F X(k)

F X(k)
. (26)

The relative survival error is

δ(k) =

∣∣∣∣F Y (k) − FX(k)

F X(k)

∣∣∣∣ = | − ω|, (27)

and δ(k + 1)− δ(k) = 0. Similar considerations show that β(k) is a decreasing
function of k. See Gupta et al (1996).

5 Applications

Consider the zero-adjusted Poisson distribution presented earlier and given by

P (Y = y) =

{
ω + (1 − ω)exp(−λ) if y = 0,
(1 − ω)exp(−λ)λy/y! if y > 0.

Using the following relation

y∑
k=0

λk

k!
=

eλ(1 + y)Γ(1 + y, λ)

Γ(y + 2)
, (28)

where Γ(1 + y, λ) is the incomplete gamma function. The corresponding cu-
mulative distribution function is given by

FY (y) =

{
ω + (1 − ω)exp(−λ) if y = 0,

ω + (1 − ω)exp(−λ)
(

exp(λ)(1+y)Γ(1+y,λ)
Γ(y+2)

− 1
)

if y ≥ 1.

This reduces to

FY (y) =

{
ω + (1 − ω)exp(−λ) if y = 0,

ω + (1−ω)Γ(1+y,λ)
Γ(y+1)

if y ≥ 1.

Note that F Y (k) = (1 − ω)Γ(k+1)−Γ(k+1,λ)
Γ(k+1)

, for k ≥ 1 so that

hY (k) = ln(

(
F Y (k − 1)

F Y (k)

)

= ln

(
(1 − ω)(Γ(k) − Γ(k, λ))

Γ(k)
.

Γ(k + 1)

(1 − ω)(Γ(k) − Γ(k + 1, λ))

)

= ln

(
k(Γ(k) − Γ(k, λ))

Γ(k + 1) − Γ(k + 1, λ)

)

= hX(k), (29)
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for k ≥ 1. Also,

γY (k) =
λkexp(−λ)

Γ(k + 1) − Γ(k + 1, λ)
= γX(k), (30)

for k ≥ 1. The probability function for the length-biased zero-inflated Poisson
(LBZIP) random variable Y is given by

fY (k) =

{
ω if k = 0,

(1 − ω) exp(−λ)λk−1

(k−1)!
if k > 0.

Note that
fY (k + 1)

fY (k)
=

{
1 if k = 0,
λ
k

if k > 0.

Consequently, fY (k) is log-concave, equivalently { fY (k+1)
fY (k)

}k≥1 is decreasing and

hence IFR.

6 Concluding Remarks

In this paper, we obtained and presented results on reliability measures for
weighted and unweighted zero-adjusted and unadjusted models. We examined
the problem of interpretation of the hazard rate function that arises from the
use of the traditional definition of hazard functions in the discrete distributions
as it relates to the zero-adjusted and length-biased models. The definition of
the hazard rate function that avoids interpretation as a probability is used,
since it is known that the hazard rate function is not a probability. This def-
inition is used to establish relations for various reliability measures including
the mean residual life function in the zero-adjusted and unadjusted models.
Applications of the results as it relates to weighted (length-biased) distribu-
tions are also presented.
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