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Abstract. Let k be a perfect field which admits resolution of singularities in the sense
of Friedlander and Voevodsky (for example, k of characteristic 0). Let X be a smooth proper
k-variety of pure dimension n and Y,Z two disjoint closed subsets of X. We prove an isomor-
phism

M(X − Z, Y) � M(X − Y,Z)∗(n)[2n] ,

where M(X − Z, Y) and M(X − Y,Z) are relative Voevodsky motives, defined in his triangu-
lated category DMgm(k).

Introduction. Relative duality is a useful tool in algebraic geometry and has been used
several times. Here we prove a version of it in Voevodsky’s triangulated category of geometric
motives DMgm(k) [10], where k is a (perfect) field which admits resolution of singularities.
(Recall that, according to [6, Def. 3.4], this means that every k-scheme of finite type may be
dominated by a smooth k-scheme via a proper surjective morphism, and that moreover any
modification with base a smooth k-scheme may be dominated by a composition of blow-ups
with smooth centres: this is the case if k is of characteristic 0, by Hironaka’s main theorems.)

Namely, let X be a smooth proper k-variety of pure dimension n and Y,Z two disjoint
closed subsets of X. We prove in Theorem 3.1 an isomorphism

M(X − Z, Y ) � M(X − Y,Z)∗(n)[2n] ,

where M(X − Z, Y ) and M(X − Y,Z) are relative Voevodsky motives, see Definition 1.1.
This isomorphism remains true after application of any ⊗-functor from DMgm(k), for

example one of the realisation functors appearing in [9, I.VI.2.5.5 and I.V.2], [7], [8] or [2].
In particular, taking the Hodge realisation, this makes the recourse to M. Saito’s theory of
mixed Hodge modules unnecessary in [1, Proof of 2.4.2].

The main tools in the proof of Theorem 3.1 are a good theory of extended Gysin mor-
phisms, readily deduced from Déglise’s work (Section 2), Voevodsky’s localisation theorem
for motives with compact supports [10, 4.1.5], and his theorem that, for any scheme of finite
type X ∈ Sch/k, the object M(X) := C∗(L(X)) of DMeff− (k) actually belongs to DMeff

gm(k)

(ibid., 4.1.4). This may be used for an alternative presentation of some of the duality results
of [10, §4.3]. The arguments seem axiomatic enough to be transposable to other contexts.

We assume familiarity with Voevodsky’s paper [10], and use its notation throughout.
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1. Relative motives and motives with supports.

DEFINITION 1.1. Let X ∈ Sch/k and Y ⊆ X, closed. We set

M(X, Y ) = C∗(L(X)/L(Y )) ,

MY (X) = C∗(L(X)/L(X − Y )) .

REMARK 1.2. This convention is different from the one of Déglise in [3, 4, 5] where
what we denote by MY (X) is written M(X, Y ) (and occasionally MY (X) as well). Like
Déglise, we shall only consider these motives for X smooth (but Y may be singular).

Note that L(Y ) → L(X) and L(X − Y ) → L(X) are monomorphisms, so that we have
functorial exact triangles

M(Y) → M(X) → M(X, Y )
+1−→ ,

M(X − Y ) → M(X) → MY (X)
+1−→ .

(1)

We can mix the two ideas: for Y,Z ⊆ X closed, define

MZ(X, Y ) = C∗(L(X)/L(Y ) + L(X − Z)) .

LEMMA 1.3. If Y∩Z = ∅, the obvious map MZ(X) → MZ(X, Y ) is an isomorphism,
and we have an exact triangle

M(X − Z, Y ) → M(X, Y )
δ−→ MZ(X)

+1−→ . �

2. Extended Gysin. In the situation of Lemma 1.3, assume that Z is smooth of pure
codimension c. F. Déglise has then constructed a purity isomorphism

pZ⊂X : MZ(X)
∼−→ M(Z)(c)[2c](2)

with the following properties:
(1) pZ⊂X coincides with Voevodsky’s purity isomorphism of [10, 3.5.4] (see [5, 1.11]).
(2) If f : X′ → X is transverse to Z in the sense that Z′ = Z ×X X′ is smooth of pure

codimension c in X′, then the diagram

MZ′
(X′)

pZ′⊂X′−−−−→ M(Z′)(c)[2c]
(f,g)∗



� g∗



�

MZ(X)
pZ⊂X−−−→ M(Z)(c)[2c]

commutes, where g = f|Z′ ([3, Rem. 4] or [4, 2.4.5]).
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(3) If i : T ⊂ Z is a closed subset, smooth of codimension d in X, the diagram

MZ(X)
pZ⊂X ��

i∗

��

M(Z)(c)[2c]
α

��������������

MT (Z)(c)[2c]
pT ⊂Z

��������������

MT (X)
pT ⊂X �� M(T )(d)[2d]

commutes, where α is the twist/shift of the second map in the triangle corresponding to (1)
[5, proof of 2.3].

DEFINITION 2.1. We set:

gY
Z⊂X = pZ⊂X ◦ δ

where pZ⊂X is as in (2) and δ is the morphism appearing in Lemma 1.3.

In view of the properties of pZ⊂X, these extended Gysin morphisms have the following
properties:

PROPOSITION 2.2. (a) Let f : X′ → X be a morphism of smooth schemes. Let
Z′ = f −1(Z) and Y ′ = f −1(Y ). If f is transverse to Z, the diagram

M(X′, Y ′)
gY ′
Z′⊂X′−−−→ M(Z′)(c)[2c]

f∗


� g∗



�

M(X, Y )
gY
Z⊂X−−−→ M(Z)(c)[2c]

commutes, with g = f|Z .
(b) Let X ⊃ Z ⊃ Z′ be a chain of smooth k-schemes of pure codimensions, and let

d = codimZZ′. Let Y ⊂ X be closed, with Y ∩ Z = ∅. Then

gY
Z′⊂X = gZ′⊂Z(d)[2d] ◦ gY

Z⊂X .

3. Relative duality. In this section, X is a smooth proper variety purely of dimension
n and Y,Z are two disjoint closed subsets of X. Consider the diagonal embedding of X into
X × X: its intersection with (X − Y ) × (X − Z) is closed and isomorphic to X − Y − Z. The
closed subset (X − Y ) × Y ∪ Z × (X − Z) is disjoint from X − Y − Z; from Definition 2.1
we get a extended Gysin map

M((X − Y ) × (X − Z), (X − Y ) × Y ∪ Z × (X − Z)) → M(X − Y − Z)(n)[2n] .

Note that the left hand side is isomorphic to M(X − Y,Z) ⊗ M(X − Z, Y ) by an
explicit computation from the definition of relative motives. Composing with the projection
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M(X − Y − Z)(n)[2n] → Z(n)[2n], we get a map

M(X − Y,Z) ⊗ M(X − Z, Y ) → Z(n)[2n]

and hence a map

M(X − Z, Y )
α

Y,Z
X−→ M(X − Y,Z)∗(n)[2n] .(3)

THEOREM 3.1. The map (3) is an isomorphism.

The proof is given in the next section.

4. Proof of Theorem 3.1.

LEMMA 4.1. If Y = Z = ∅ and X is projective, then (3) is an isomorphism.

PROOF. As pointed out in [10, p. 221], α
∅,∅
X corresponds to the class of the diagonal;

then Lemma 4.1 follows from the functor of [10, 2.1.4] from Chow motives to DMgm(k).
(This avoids a recourse to [10, 4.3.2 and 4.3.6].) �

The next step is when Z is empty. For any U ∈ Sch/k, write Mc(U) := C∗(Lc(U))

[10, p. 224]. Since X is proper, by [10, 4.1.5] there is a canonical isomorphism

M(X, Y )
∼−→ Mc(X − Y )

induced by the map of Nisenvich sheaves

L(X)/L(Y ) → Lc(X − Y ) .

Therefore, from α
Y,∅
X , we get a map

βY
X : Mc(X − Y ) → M(X − Y )∗(n)[2n] .

LEMMA 4.2. The map βY
X only depends on X − Y .

PROOF. Let U = X − Y . If X′ is another smooth compactification of U , with Y ′ =
X′ − U , we need to show that βY

X = βY ′
X′ . By resolution of singularities, X and X′ may be

dominated by a third smooth compactification; therefore, without loss of generality, we may
assume that the rational map q : X′ → X is a morphism. The point is that, in the diagram

M(X′, Y ′)

������������

�

���
��

��
��

��
��

��
��

�� α
Y ′,∅
X′

����������������������

M(X, Y )
α

Y,∅
X

��

�
��

M(U)∗(n)[2n]

Mc(U)
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both triangles commute. For the left one it is obvious, and for the upper one this follows from
the naturality of the pairing (3). Indeed, the square

X′ − Y ′ ∆′−−→ (X′ − Y ′) × X′

q ′


� q ′×q



�

X − Y
∆−−→ (X − Y ) × X

is clearly transverse, where q ′ = q|X′−Y ′ (an isomorphism) and ∆,∆′ are the diagonal em-
beddings; therefore we may apply Proposition 2.2 (a). �

From now on, we write βX−Y for the map βY
X.

LEMMA 4.3. (a) Let U ∈ Sm/k of pure dimension n, T
i−→ U closed, smooth of

pure dimension m and V = U − T
j−→ U . Then the diagram

Mc(T )
βT−−→ M(T )∗(m)[2m]

i∗


�



�g∗

T ⊂U (n)[2n]

Mc(U)
βU−−→ M(U)∗(n)[2n]

j∗


�



�j∗

Mc(V )
βV−−→ M(V )∗(n)[2n]

commutes.
(b) Suppose that βT is an isomorphism. Then βU is an isomorphism if and only if βV

is.

PROOF. (a) The bottom square commutes by a trivial case of Proposition 2.2 (a). For
the top square, the statement is equivalent to the commutation of the diagram

Mc(T ) ⊗ M(T )(c)[2c]

���������������

Mc(T ) ⊗ M(U)

1⊗gT ⊂U

		���������������

i∗⊗1 ����������������� Z(n)[2n]

Mc(U) ⊗ M(U)



													

with c = n − m.
Take a smooth compactification X of U , and let T̄ be a desingularisation of the closure

of T in X. Let q : T̄ → X be the corresponding morphism, Y = X − U and W = T̄ − T :
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we have to show that the diagram

M(T̄ ,W) ⊗ M(T )(c)[2c]

����������������

M(T̄ ,W) ⊗ M(U)

1⊗gT ⊂U

������������������

q∗⊗1 ��
















Z(n)[2n] ,

M(X, Y ) ⊗ M(U)

		��������������

or equivalently

M(T̄ × T ,W × T )(c)[2c]

����������������

M(T̄ × U,W × U)

f ◦gW×U

T̄ ×T ⊂T̄ ×U

������������������

(q×1)∗ ��
















Z(n)[2n]

M(X × U, Y × U)

		��������������

commutes, where f is the map M(T̄ × T )(c)[2c] → M(T̄ × T ,W × T )(c)[2c]. For this, it
is enough to show that the diagram

M(T̄ × T ,W × T )(c)[2c]
gW×T

T ⊂T̄ ×T
(c)[2c]

�� M(T )(n)[2n]

i∗

��

M(T̄ × U,W × U)

f ◦gW×U

T̄×T ⊂T̄ ×U

������������������

(q×1)∗ ��

















M(X × U, Y × U)
gY×U
U⊂X×U �� M(U)(n)[2n]

commutes. Since extended Gysin extends Gysin, Proposition 2.2 (a) shows that this amounts
to the commutatvity of

M(T̄ × U,W × U)
gW×U

T ⊂T̄ ×U−−−−→ M(T )(n)[2n]
(q×1)∗



� i∗



�

M(X × U, Y × U)
gY×U
U⊂X×U−−−−−→ M(U)(n)[2n] ,

which follows from the functoriality of the extended Gysin maps (Proposition 2.2 (b)).
(b) This follows immediately from (a). �

PROPOSITION 4.4. βU is an isomorphism for all smooth U .
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PROOF. We argue by induction on n = dim U , the case n = 0 being known by Lemma
4.1. In general, let V be an open affine subset of U and pick a smooth projective compactifi-
cation X of V , with Z = X − V . Let Z ⊃ Z1 ⊃ · · · ⊃ Zr = ∅, where Zi+1 is the singular
locus of Zi . Let also T = U − V and define similarly T ⊃ T1 ⊃ · · · ⊃ Ts = ∅ (all Zi and Tj

are taken with their reduced structure). Let Vi = X − Zi and Uj = U − Tj . Then Vi − Vi−1

and Uj − Uj−1 are smooth for all i, j . Thus βU is an isomorphism by Lemma 4.1 (case of
βX) and a repeated application of Lemma 4.3 (b). �

REMARK 4.5. We have not tried to check whether βU is the inverse of the isomor-
phism appearing in the proof of [10, 4.3.7]: we leave this interesting question to the interested
reader.

END OF PROOF OF THEOREM 3.1. By Lemma 1.3, the triangle

M(Z) → M(X − Y ) → M(X − Y,Z)
+1−→

and the duality pairings induce a map of triangles

M(X − Y,Z)∗(n)[2n] −−→ M(X − Y )∗(n)[2n] −−→ M(Z)∗(n)[2n]
α

Y,Z
X

�

 α

Y,∅
X

�

 Φ

�



M(X − Z, Y ) −−→ M(X, Y ) −−→ MZ(X) .

(The left square commutes by a trivial application of Proposition 2.2 (a), and Φ is some
chosen completion of the commutative diagram by the appropriate axiom of triangulated cat-
egories.)

Consider the following diagram (which is the previous diagram with Y = ∅):

M(X,Z)∗(n)[2n] −−→ M(X)∗(n)[2n] −−→ M(Z)∗(n)[2n]
α

∅,Z
X

�

 α

∅,∅
X

�

 Φ

�



M(X − Z) −−→ M(X) −−→ MZ(X) .

Note that α
∅,Z
X is dual to α

Z,∅
X ; therefore it is an isomorphism by Lemma 4.2 and Propo-

sition 4.4. It follows that Φ is an isomorphism. Coming back to the first diagram and using
Lemma 4.2 and Proposition 4.4 a second time, we get the theorem. �

REMARK 4.6. It would be interesting to produce a canonical pairing

∩(X,Z) : MZ(X) ⊗ M(Z) → Z(n)[2n]
playing the rôle of Φ in the above proof, i.e., compatible with α

Y,Z
X .
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