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It is known [l; 2] that every inverse semigroup 5 has a faithful

representation as a semigroup of (1, l)-mappings of subsets of a set

A into A. The set A may be taken as the set of elements of 5 and the

(1, l)-mappings as mappings of principal left ideals of 5 onto prin-

cipal left ideals of 5. If £ is the set of idempotents of 5 then there is

also a representation of 5, not necessarily faithful, as a semigroup of

(1, l)-mappings of subsets of E into E [2]. If e££ denote by Se the

subsemigroup eSe of 5. In this note we give a representation of any

inverse semigroup S as a semigroup of isomorphisms between the

semigroups Se. The representation is faithful if (a more general con-

dition is given below) the center of each maximal subgroup of 5 is

trivial.

We recall that an inverse semigroup [3] is a semigroup S in which

for any aES the equations xax — x and axa = a have a unique common

solution xES called the inverse of a and denoted by a~l [5; 6]. This

implies that the idempotents of 5 commute and that to each aES

there corresponds a pair of idempotents e, f such that aa~l = e, a~la

=/, ea = a, af=a. The idempotents e, f are called respectively the left

and right units of a. For any two elements a, bES, (ab)~1 = b~ia~1

(see [3]). Throughout what follows 5 will denote an inverse semi-

group and E will denote its set of idempotents. If e£E then S, will

denote the subsemigroup eSe of 5.

Lemma 1. If e,fEE then Ser\S/ = Sef.

Proof. By Lemma 1 of [4] and its left-right dual SeC\Sf = Sef and

eSr\fS = efS. Hence since Se = eSr\Se and Sf=fSr\Sf, it follows that

S,r\Sf = efSr\Sef=Sef.
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Lemma 2. If a is an element of S with left unit e and right unit f then

Se is isomorphic to Sf.

Proof. We show that the mapping aa: s—>saa = a~lsa, where

s£S<„ is an isomorphism of Se onto S/.

Let a~1sa = t; then since af=a and fa~l=a~1, ft = t = tf and so

/£S/. Hence aa maps Se into S/. Now let t be any element of Sf. Then

a repetition of the above argument with a~~l replacing a shows that

ata~1 = s(E.Se. Thus, since saa = a~1sa = a~1ata~1a=ftf=t, the mapping

aa is onto Sf.

If a~1Sia = a~1s2a for si, s2ESe then aa~lSiaa~1 = aa~1s2aa~l, so that

since aarx — e and eSi = Si = ste, Si = s2. Hence <xa is a (1, l)-mapping.

Finally that aa is a homomorphism follows because if su s2E.Se,

then siaaStaa = a~lSiaa~1Sta = a~1SiSta= (siS2)aa because Si (or s2)(ESe

implies that Sies2 = SiS2.

The set of all elements of 5 with e as both left unit and right unit

forms a group denoted by Ge [3]. The groups Ge are clearly the

maximal subgroups of S. We now have as a corollary to Lemma 2 the

result

Corollary. // a is an element of S with left unit e and right unit f

then Ge is isomorphic to Gf.

Proof. It is easily seen that the restriction of aa to Ge maps Ge

onto Gf.

Denote by A (S) the set of isomorphisms {aa: aES}, defined in the

proof of Lemma 2. Since an isomorphism is a (1, l)-mapping, the set

A(S) generates a semigroup MA(S), say, of (1, l)-mappings formed

by taking all finite products of the elements of A(S). If a and /3 are

(1, l)-mappings the product ap is the mapping a followed by the

mapping p applied to those elements for which this sequence of

mappings can be carried out [2], If there are no such elements we

write a/3 = 0, and can regard 0 as the unique (1, l)-mapping of the

elements of the empty set into the empty set. Then we have

Lemma 3. A(S) = MA(S).

Proof. It is sufficient to show that for any a, &£5, aaoib€zA(S).

Let aa~1 = e, a~1a=f, bb~1 = g, b_1b = h, so that aa maps Se onto Sf

and at maps SB onto Sh. Then, by Lemma 1, Sfr\Sa = Sfg and so aaaib

maps SfgCtzr1 onto Sfgccb. We show that aactb = aab.

Let (ab)(ab)~l = k and (ab)~l(ab)—l. Let xG-S/eOT1, so that x(ES,

and hence aa~1xaa~1=x, and also xaaESfg so that fga~1xafg = a~1xa,

from which it follows that afga~lxafga~1 = aa~1xaa~1=x. But afga~l

= aa~1abb~la~l = ab(ab)~1 = k, and so &x&=x and xGS*- Conversely,
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if x E Sk, then fg(xaa)fg = fga~lxafg = fga-lxagf = a~l(ab)(ab)~1

■x(ab)(ab)~1a = a~1kxka = a~lxa = xaa, and so xaaESf0. We similarly

prove that S/gab = Si.

& Thus aa(Xb maps Sk onto Si and since xaaab = (a~1xa)<Xb = b~1a~1xab

= (ab)~lx(ab) = xoiab for xESk, aaab = aab. This completes the proof

of the lemma.

In [3] it was shown that the homomorphic image of an inverse

semigroup is an inverse semigroup. If yt: S—+T is a homomorphic

mapping of 5 onto T, then the kernel N of ju is the inverse image

under li of the set of idempotents of T, and N is the union of its com-

ponents, each component being the inverse image of a single idem-

potent of T. It was shown in [3] that, given 5 and T, the homomor-

phism ju is determined by the components of the kernel of (i.

The center of a semigroup T is the set Z(T) = \z: zET, zt = tz for

all tET\. Z(T) is clearly a subsemigroup of T. Denote by Ze the cen-

ter of the maximal subgroup Gt of 5. Then we have the

Theorem. The mapping p: S—>A(S) of S onto A(S) defined by

aii=aafor aES is a homomorphism. The kernel of n is N = \jNe, where

Ne is the normal subgroup Z(S^)C\Ze of Ge and the union is taken over

all eEE.

Proof. We have already seen in the course of the proof of Lemma

3 that jit is a homomorphism of S onto A(S).

It remains to determine the kernel of li. Let cta be an idempotent

of -4(5). Then aa must be the identical mapping of some set Se, and

so for sESe, saa — a~1sa = s. Hence aa~1sa = as, and since aa~l = e,

aa~ls = s, therefore sa = as, and so aEZ(Se). Since also aEGe, and

Ge^Se, therefore a£Ze. Hence aEZ(Se)C~\Ze.

Conversely, let bEZ(Se)f~\Ze. Then &£Ge so that bb~1 = e = b~^b,

and bs = sb for all sESe. Hence sab = b~lsb = b~1bs = es = s = saa, so that

aa = ab.

Thus Ne = /j,~1(aa) =Z(Se)C\Ze; which completes the proof of the

theorem.

Corollary. If for each eEE, Z(Se)C\Ze = e, then the mapping n is

an isomorphism.

It follows, as we remarked earlier, that if each Ze = e, that is if the

center of each maximal subgroup of S is trivial, then 5 has a faithful

representation as a semigroup of isomorphisms between the semi-

groups Se.

Finally we remark that in this latter case when each Ze = e, the iso-

morphisms aa are determined by their restrictions to the groups Ge.
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Thus we can regard A (S) as a semigroup of isomorphisms between the

groups Ge. When the elements of A (S) are so regarded the product of

two elements of A (S) cannot be defined in a natural way independ-

ently of S.
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