3. Flora Dinkines, Semi-automorphisms of symmetric and alternating groups, Proc. Amer. Math. Soc. vol. 2 (1951) pp. 478-486.

University of Kansas and
Institute for Advanced Study

A NOTE ON REPRESENTATIONS OF INVERSE SEMIGROUPS

G. B. PRESTON

It is known $[1 ; 2$] that every inverse semigroup S has a faithful representation as a semigroup of $(1,1)$-mappings of subsets of a set A into A. The set A may be taken as the set of elements of S and the (1, 1)-mappings as mappings of principal left ideals of S onto principal left ideals of S. If E is the set of idempotents of S then there is also a representation of S, not necessarily faithful, as a semigroup of (1, 1)-mappings of subsets of E into E [2]. If $e \in E$ denote by S_{e} the subsemigroup $e S e$ of S. In this note we give a representation of any inverse semigroup S as a semigroup of isomorphisms between the semigroups S_{e}. The representation is faithful if (a more general condition is given below) the center of each maximal subgroup of S is trivial.

We recall that an inverse semigroup [3] is a semigroup S in which for any $a \in S$ the equations $x a x=x$ and $a x a=a$ have a unique common solution $x \in S$ called the inverse of a and denoted by $a^{-1}[5 ; 6]$. This implies that the idempotents of S commute and that to each $a \in S$ there corresponds a pair of idempotents e, f such that $a a^{-1}=e, a^{-1} a$ $=f, e a=a, a f=a$. The idempotents e, f are called respectively the left and right units of a. For any two elements $a, b \in S,(a b)^{-1}=b^{-1} a^{-1}$ (see [3]). Throughout what follows S will denote an inverse semigroup and E will denote its set of idempotents. If $e \in E$ then S_{e} will denote the subsemigroup $e S e$ of S.

Lemma 1. If e, $f \in E$ then $S_{e} \cap S_{f}=S_{e f}$.
Proof. By Lemma 1 of [4] and its left-right dual $S e \cap S f=S e f$ and $e S \cap f S=e f S$. Hence since $S_{e}=e S \cap S e$ and $S_{f}=f S \cap S f$, it follows that $S_{e} \cap S_{f}=e f S \cap S e f=S_{e f}$.

Received by the editors March 9, 1957.

Lemma 2. If a is an element of S with left unit e and right unit f then S_{e} is isomorphic to S_{f}.

Proof. We show that the mapping $\alpha_{a}: s \rightarrow s \alpha_{a}=a^{-1} s a$, where $s \in S_{e}$, is an isomorphism of S_{e} onto S_{f}.

Let $a^{-1} s a=t$; then since $a f=a$ and $f a^{-1}=a^{-1}, f t=t=t f$ and so $t \in S_{f}$. Hence α_{a} maps S_{e} into S_{f}. Now let t be any element of S_{f}. Then a repetition of the above argument with a^{-1} replacing a shows that $a t a^{-1}=s \in S_{e}$. Thus, since $s \alpha_{a}=a^{-1} s a=a^{-1} a t a^{-1} a=f t f=t$, the mapping α_{a} is onto S_{f}.

If $a^{-1} s_{1} a=a^{-1} s_{2} a$ for $s_{1}, s_{2} \in S_{e}$ then $a a^{-1} s_{1} a a^{-1}=a a^{-1} s_{2} a a^{-1}$, so that since $a a^{-1}=e$ and $e s_{i}=s_{i}=s_{i} e, s_{1}=s_{2}$. Hence α_{a} is a (1, 1)-mapping.

Finally that α_{a} is a homomorphism follows because if $s_{1}, s_{2} \in S_{e}$, then $s_{1} \alpha_{a} s_{2} \alpha_{a}=a^{-1} s_{1} a a^{-1} s_{2} a=a^{-1} s_{1} s_{2} a=\left(s_{1} s_{2}\right) \alpha_{a}$ because $s_{1} \quad\left(\right.$ or $\left.s_{2}\right) \in S_{e}$ implies that $s_{1} e s_{2}=s_{1} s_{2}$.

The set of all elements of S with e as both left unit and right unit forms a group denoted by G_{e} [3]. The groups G_{e} are clearly the maximal subgroups of S. We now have as a corollary to Lemma 2 the result

Corollary. If a is an element of S with left unit e and right unit f then G_{e} is isomorphic to G_{f}.

Proof. It is easily seen that the restriction of α_{a} to G_{e} maps G_{e} onto G_{f}.

Denote by $A(S)$ the set of isomorphisms $\left\{\alpha_{a}: a \in S\right\}$, defined in the proof of Lemma 2. Since an isomorphism is a (1,1)-mapping, the set $A(S)$ generates a semigroup $M A(S)$, say, of $(1,1)$-mappings formed by taking all finite products of the elements of $A(S)$. If α and β are (1, 1)-mappings the product $\alpha \beta$ is the mapping α followed by the mapping β applied to those elements for which this sequence of mappings can be carried out [2]. If there are no such elements we write $\alpha \beta=0$, and can regard 0 as the unique (1,1)-mapping of the elements of the empty set into the empty set. Then we have

Lemma 3. $A(S)=M A(S)$.
Proof. It is sufficient to show that for any $a, b \in S, \alpha_{a} \alpha_{b} \in A(S)$.
Let $a a^{-1}=e, a^{-1} a=f, b b^{-1}=g, b^{-1} b=h$, so that α_{a} maps S_{e} onto S_{f} and α_{b} maps S_{g} onto S_{h}. Then, by Lemma $1, S_{f} \cap S_{g}=S_{f g}$ and so $\alpha_{a} \alpha_{b}$ maps $S_{f o} \alpha_{a}^{-1}$ onto $S_{f g} \alpha_{b}$. We show that $\alpha_{a} \alpha_{b}=\alpha_{a b}$.

Let $(a b)(a b)^{-1}=k$ and $(a b)^{-1}(a b)=l$. Let $x \in S_{f g} \alpha_{a}^{-1}$, so that $x \in S_{6}$ and hence $a a^{-1} x a a^{-1}=x$, and also $x \alpha_{a} \in S_{f g}$ so that $f g a^{-1} x a f g=a^{-1} x a$, from which it follows that $a f \mathrm{fa}^{-1} \mathrm{xafga}^{-1}=a a^{-1} \mathrm{xaa}^{-1}=x$. But afga ${ }^{-1}$ $=a a^{-1} a b b^{-1} a^{-1}=a b(a b)^{-1}=k$, and so $k x k=x$ and $x \in S_{k}$. Conversely,
if $x \in S_{k}$, then $f g\left(x \alpha_{a}\right) f g=f g a^{-1} x a f g=f g a^{-1} x a g f=a^{-1}(a b)(a b)^{-1}$ $\cdot x(a b)(a b)^{-1} a=a^{-1} k x k a=a^{-1} x a=x \alpha_{a}$, and so $x \alpha_{a} \in S_{f g}$. We similarly prove that $S_{f t} \alpha_{b}=S_{l}$.
${ }^{6}$ Thus $\alpha_{a} \alpha_{b}$ maps S_{k} onto S_{l} and since $x \alpha_{a} \alpha_{b}=\left(a^{-1} x a\right) \alpha_{b}=b^{-1} a^{-1} x a b$ $=(a b)^{-1} x(a b)=x \alpha_{a b}$ for $x \in S_{k}, \alpha_{a} \alpha_{b}=\alpha_{a b}$. This completes the proof of the lemma.

In [3] it was shown that the homomorphic image of an inverse semigroup is an inverse semigroup. If $\mu: S \rightarrow T$ is a homomorphic mapping of S onto T, then the kernel N of μ is the inverse image under μ of the set of idempotents of T, and N is the union of its components, each component being the inverse image of a single idempotent of T. It was shown in [3] that, given S and T, the homomorphism μ is determined by the components of the kernel of μ.

The center of a semigroup T is the set $Z(T)=\{z: z \in T, z t=t z$ for all $t \in T\} . Z(T)$ is clearly a subsemigroup of T. Denote by Z_{e} the center of the maximal subgroup G_{e} of S. Then we have the

Theorem. The mapping $\mu: S \rightarrow A(S)$ of S onto $A(S)$ defined by $a \mu=\alpha_{a}$ for $a \in S$ is a homomorphism. The kernel of μ is $N=U N_{e}$, where N_{e} is the normal subgroup $Z\left(S_{e}\right) \cap Z_{e}$ of G_{e} and the union is taken over all $e \in E$.

Proof. We have already seen in the course of the proof of Lemma 3 that μ is a homomorphism of S onto $A(S)$.

It remains to determine the kernel of μ. Let α_{a} be an idempotent of $A(S)$. Then α_{a} must be the identical mapping of some set S_{e}, and so for $s \in S_{e}, s \alpha_{a}=a^{-1} s a=s$. Hence $a a^{-1} s a=a s$, and since $a a^{-1}=e$, $a a^{-1} s=s$, therefore $s a=a s$, and so $a \in Z\left(S_{e}\right)$. Since also $a \in G_{e}$, and $G_{e} \subseteq S_{e}$, therefore $a \in Z_{e}$. Hence $a \in Z\left(S_{e}\right) \cap Z_{e}$.

Conversely, let $b \in Z\left(S_{e}\right) \cap Z_{e}$. Then $b \in G_{e}$ so that $b b^{-1}=e=b^{-1} b$, and $b s=s b$ for all $s \in S_{e}$. Hence $s \alpha_{b}=b^{-1} s b=b^{-1} b s=e s=s=s \alpha_{a}$, so that $\alpha_{a}=\alpha_{b}$.

Thus $N_{e}=\mu^{-1}\left(\alpha_{a}\right)=Z\left(S_{e}\right) \cap Z_{e}$; which completes the proof of the theorem.

Corollary. If for each $e \in E, Z\left(S_{e}\right) \cap Z_{e}=e$, then the mapping μ is an isomorphism.

It follows, as we remarked earlier, that if each $Z_{e}=e$, that is if the center of each maximal subgroup of S is trivial, then S has a faithful representation as a semigroup of isomorphisms between the semigroups S_{e}.

Finally we remark that in this latter case when each $Z_{0}=e$, the isomorphisms α_{a} are determined by their restrictions to the groups G_{e}.

Thus we can regard $A(S)$ as a semigroup of isomorphisms between the groups G_{e}. When the elements of $A(S)$ are so regarded the product of two elements of $A(S)$ cannot be defined in a natural way independently of S.

References

1. V. V. Vagner, Obob̧̌̌ennye gruppy, C. R. (Doklady) Acad. Nauk URSS. vol. 84 (1952) pp. 1119-1122.
2. G. B. Preston, Representations of inverse semigroups, J. London Math. Soc. vol. 29 (1954) pp. 411-419.
3. G. B. Preston, Inverse semigroups, J. London Math. Soc. vol. 29 (1954), pp. 396-403.
4. G. B. Preston, Inverse semigroups with minimal right ideals, J. London Math. Soc. vol. 29 (1954) pp. 404-411.
5. A. E. Liber, K teorii obobsčennyh grupp, C. R. (Doklady) Acad. Nauk URSS. vol. 97 (1954) pp. 25-28.
6. W. D. Munn and R. Penrose, A note on inverse semigroups, Proc. Cambridge Philos. Soc. vol. 51 (1955) pp. 396-399.

The Tulane University and
The Royal Military College of Science, Shrivenham, Eng.

