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It is known [1;2] that every inverse semigroup S has a faithful
representation as a semigroup of (1, 1)-mappings of subsets of a set
A into A. The set A may be taken as the set of elements of S and the
(1, 1)-mappings as mappings of principal left ideals of S onto prin-
cipal left ideals of S. If E is the set of idempotents of S then there is
also a representation of .S, not necessarily faithful, as a semigroup of
(1, 1)-mappings of subsets of E into E [2]. If eEE denote by S. the
subsemigroup eSe of S. In this note we give a representation of any
inverse semigroup S as a semigroup of isomorphisms between the
semigroups S.. The representation is faithful if (a more general con-
dition is given below) the center of each maximal subgroup of S is
trivial.

We recall that an inverse semigroup [3] is a semigroup S in which
for any a €S the equations xax =x and axa =a have a unique common
solution xE S called the inverse of a and denoted by a=! [5; 6]. This
implies that the idempotents of S commute and that to each a&S
there corresponds a pair of idempotents e, f such that aa~'=e¢, a~'a
=f, ea=a, af =a. The idempotents e, f are called respectively the left
and right units of a. For any two elements a, bES, (ab)~'=b""la!
(see [3]). Throughout what follows S will denote an inverse semi-
group and E will denote its set of idempotents. If e E then S. will
denote the subsemigroup eSe of S.

LeEMMA 1. If e, fEE then S.N\S;=S.;.

ProoF. By Lemma 1 of [4] and its left-right dual SeNSf=Sef and
eSNfS =efS. Hence since S.=eSMSe and S;=fSNSf, it follows that
SNS;=efSNSef =S,y
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LEMMA 2. If a is an element of S with left unit e and right unit f then
S, 1s isomorphic to S;.

Proor. We show that the mapping «,:s—sa,=a"'sa, where
sES., is an isomorphism of S, onto S;.

Let a='sa=t; then since af=a and fa='=a~!, fi=t=¢f and so
t&Sy. Hence o, maps S. into Sy. Now let ¢ be any element of S;. Then
a repetition of the above argument with a~! replacing a shows that
ata~'=sE&S,. Thus, since saa =a~'sa =a~'ata"'a =fif =t, the mapping
o, is onto S;.

If a—1s,a =a"1s.a for s, s:E S, then aa~'s;aa~'=aa"'s:aa™!, so that
since aa~'=e¢ and es; =s;=s.¢, 51 =52. Hence a, is a (1, 1)-mapping.

Finally that a, is a homomorphism follows because if s;, 5;&S,,
then sia.s:05 =a71s1a07 1520 = a7 151500 = (5152)cs because s; (or s,) E.S,
implies that s;es,=s15..

The set of all elements of S with e as both left unit and right unit
forms a group denoted by G. [3]. The groups G, are clearly the
maximal subgroups of S. We now have as a corollary to Lemma 2 the
result

COROLLARY. If a is an element of S with left unit e and right unit f
then G, is isomorphic to G;.

Proor. It is easily seen that the restriction of &, to G, maps G,
onto Gy.

Denote by 4 (S) the set of isomorphisms {a,: a €S}, defined in the
proof of Lemma 2. Since an isomorphism is a (1, 1)-mapping, the set
A(S) generates a semigroup MA(S), say, of (1, 1)-mappings formed
by taking all finite products of the elements of 4(S). If @ and 8 are
(1, 1)-mappings the product af is the mapping « followed by the
mapping B applied to those elements for which this sequence of
mappings can be carried out [2]. If there are no such elements we
write o =0, and can regard 0 as the unique (1, 1)-mapping of the
elements of the empty set into the empty set. Then we have

LemMmaA 3. A(S)=MA(S).

Proor. It is sufficient to show that for any a, bES, a.as €EA(S).

Let aa~'=¢, a7 la=f, bb~'=g, b~'b=h, so that a, maps S, onto .S,
and e maps S, onto Si. Then, by Lemma 1, $;N\S,=.S;, and so a,a;
maps Sy,as! onto Sy, We show that azon = as.

Let (ab)(ab)~'=%k and (ab)~'(ab) =I. Let xE S0}, so that xE S,
and hence aa~xaa~'=x, and also xa, &Sy, so that fga—'xafg=a"'xa,
from which it follows that afga—'xafga—'=aa~'xaa~'=x. But afga-!
=aa"'abb~'a"'=ab(ab)"'=k, and so kxk=x and x&ES;. Conversely,
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if x& S then fg(xaa)fg = fea~'vafg = fega~'xagf = a='(ad)(ab)™"
-x(ab)(ab) la=a"kxka=a"'xa =xa,, and so xa,&Ss,. We similarly
prove that Sya, =S

# Thus a,a, maps Si onto S; and since xaz0p = (e~ 'xa)ap =b"'a " 'xabd
= (ab) x(ab) =xaq for xE Sk, a.on=a.. This completes the proof
of the lemma.

In [3] it was shown that the homomorphic image of an inverse
semigroup is an inverse semigroup. If u: S—7 is a homomorphic
mapping of S onto T, then the kernel N of u is the inverse image
under u of the set of idempotents of T, and NV is the union of its com-
ponents, each component being the inverse image of a single idem-
potent of T. It was shown in [3] that, given S and T, the homomor-
phism p is determined by the components of the kernel of u.

The center of a semigroup T is the set Z(T) = {z: 2&T, st=tz for
allt€T}. Z(T) is clearly a subsemigroup of T. Denote by Z, the cen-
ter of the maximal subgroup G. of S. Then we have the

THEOREM. The mapping u: S—A(S) of S onto A(S) defined by
au=a, for a&S is a homomorphism. The kernel of u is N=UN.,, where
N, is the normal subgroup Z(S.)NZ, of G, and the union is taken over
all e€E.

Proor. We have already seen in the course of the proof of Lemma
3 that u is a homomorphism of S onto A(S).

It remains to determine the kernel of u. Let o, be an idempotent
of A(S). Then @, must be the identical mapping of some set .S., and
so for s&S,, sa,=a"'sa=s. Hence aa~'sa=as, and since aa~'=e,
aa~'s=s, therefore sa=as, and so ¢ EZ(S.). Since also a&G,, and
G.Z.S., therefore a&EZ,. Hence a &Z(S.)MNZ..

Conversely, let b&Z(S.)NZ,. Then b&EG, so that bb—l=e=>0""b,
and bs =sb for all s&.S.. Hence say =b"1sb =b"'bs =es = s = sa,, so that
Olg = Up.

Thus Ne=p"Ya,) =Z(S.)\Z.; which completes the proof of the
theorem.

COROLLARY. If for each e€E, Z(S.)N\Z.=e, then the mapping u is
an isomorphism.

It follows, as we remarked earlier, that if each Z.=e, that is if the
center of each maximal subgroup of S is trivial, then S has a faithful
representation as a semigroup of isomorphisms between the semi-
groups S..

Finally we remark that in this latter case when each Z,=e¢, the iso-
morphisms a, are determined by their restrictions to the groups G..
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Thus we can regard 4 (S) as a semigroup of isomorphisms between the
groups G.. When the elements of 4 (.S) are so regarded the product of
two elements of 4A(S) cannot be defined in a natural way independ-
ently of S.
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