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A NOTE ON RITOV’S BAYES APPROACH TO THE MINIMAX
PROPERTY OF THE CUSUM PROCEDURE

By M. Beibel

University of Freiburg

We consider, in a Bayesian framework, the model Wt = Bt+θ�t− ν�+,
where B is a standard Brownian motion, θ is arbitrary but known and ν
is the unknown change-point. We transfer the construction of Ritov to this
continuous time setup and show that the corresponding Bayes problems
can be reduced to generalized parking problems.

1. Introduction. Page (1954) proposed the cusum procedures as a solu-
tion to the problem of sequential detection of a change in distribution. Lorden
(1971) introduced a notion of minimax optimality for change-point models and
showed that the cusum procedures are asymptotically optimal in his sense.
Moustakides (1986) then showed the minimax optimality of the cusum pro-
cedures, when the initial and final distribution are both known. Ritov (1990)
used a Bayes approach and gave an interesting argument for Moustakides’
result similar to that of Lehmann (1959) on the optimality of the sequential
probability ratio test. We transfer his approach to a continuous time model
and discuss the structure of the Bayes risk.

Let θ be an arbitrary but known constant. We will consider a process W
with

Wt = Bt + θ�t− ν�+; 0 ≤ t <∞;
where B is a standard Brownian motion and ν denotes a random change-point.
We will specify ν in Section 2. Let P denote the corresponding probability
measure. For a stopping time T of W we consider the risk function

R�T� = P�T < ν� −C1EP�T ∧ ν� +C2EP�T− ν�+;
where C1 and C2 are positive constants. Here stopping with T means deciding
that the change has already taken place. To find the minimizing stopping time
T∗, let �πt; 0 ≤ t <∞� denote a continuous version of P

(
ν ≤ t�Ws; 0 ≤ s ≤ t

)
.

We show that for all bounded stopping times T (with respect to the observed
process W) the Bayes risk can be written as

R�T� = EPg�πT� ;
where g is a twice continuous differentiable function which attains a unique
minimum over �p;1� at some point p∗. This means we can reduce the prob-
lem of finding a Bayes solution T∗ which minimizes R�T� under all stopping
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times T to a generalized parking problem [see Woodroofe, Lerche and Keener
(1993)]. Since πt is continuous in t, one can stop exactly at the minimum and
immediately obtain that

T∗ = inf�t > 0�πt = p∗� :

This approach is especially simple and makes no use of the optimal stopping
theory. The method is well adapted to optimality proofs in sequential testing
even in the case of composite hypotheses. It works for Shiryaev’s disruption
problem [see Beibel (1994)] as well as for many other cases [see, e.g., Lerche
(1986) and Beibel and Lerche (1995)].

2. The setup. Let C0�0;∞� denote the space of continuous, real-valued
functions on the interval �0;∞� which vanish at zero. Let B�C0�0;∞�� denote
the Borel σ-algebra on C0�0;∞� with respect to the topology of uniformly com-
pact convergence. Let R+0 denote the set of all nonnegative reals and let B�R+0�
denote the usual Borel σ-algebra on R+0 . Let µW denote the standard Wiener
measure on �C0�0;∞�, B�C0�0;∞��. Let θ ∈ R be an arbitrary constant. Let
p ∈ �0;1�. Let ρ denote the probability measure on R+0 with

ρ��0�� = p;
ρ��s;∞�� = �1− p� exp�−ps� :

We shall now consider the product space

��;B� =
(
C0�0;∞�× R+0;B�C0�0;∞�� ⊗B�R+0�

)

with product measure P = µW ⊗ ρ. Let W�·� and V denote the random vari-
ables on ��, B� defined by the projection on the first and the second compo-
nent, respectively. Let

F W
t x= σ�Wsy s ≤ t� and Ft x= σ�V;Wsy s ≤ t�

for 0 ≤ t <∞. Let F W
∞ x= σ�Ws; s ≥ 0�. Let 3 denote the increasing process

on ��;Ft� given by

3t x= − min
0≤s≤t

(
θWs −

θ2

2
s

)
:

We now define random variables τu by

τu x= inf �0 ≤ t� 3t = u�

for u ∈ �0;∞�. The τu are stopping times with respect to the filtration �Fty 0 ≤
t <∞�. Further we define the random variable ν by ν x= τV. The random time
ν is a stopping time with respect to the filtration �Fty 0 ≤ t <∞� and

P�ν > t� = �1− p�E exp �−p3t� :
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Note that

V = 3ν = −θWν +
θ2

2
ν:

The expression above for P�ν > t� illustrates the analogy between the priors
which we consider and the exponential priors of Shiryayev [(1973), page 158].
Loosely speaking, we replace linear deterministic time by the random time
scale 3. We will consider the stopping time ν as a random change-point. Such
a change-point depends on the observations before the change occurs. We will
now construct a probability measure P on ��;B� such that

Bt x=Wt − θ�t− ν�+

is a standard Brownian motion. For this purpose we apply Girsanov’s formula
to the exponential supermartingale Zt given by

Zt x= exp
{
θ
∫ t

0
1�ν≤s� dWs −

θ2

2

∫ t
0

1�ν≤s� ds
}
:

Note that

Zt = exp
{
θWt −

θ2

2
t+V

}
1�ν≤t� + 1�ν>t�:

Obviously, for all t ≥ 0,

E exp
{
θ2

2
�t− ν�+

}
< +∞:

This means that Novikov’s condition is fulfilled and there exists a probability
measure P on ��;B� such that Bt �0 ≤ t <∞� is a standard Brownian motion
on ��;B;P� [see Karatzas and Shreve (1988), page 192]. For simplicity of
notation, we shall write E instead of EP.

In the next two sections the parameter p will be arbitrary but fixed. There-
fore we do not indicate explicitly the dependence of P and P on p.

3. The posterior probability. We now calculate the posterior probabil-
ity under P that a change has taken place up to time t given the observation
W up to time t, P�ν ≤ t�F W

t �, which we denote by πt.

Lemma 1. For A ∈ F W
t ,

�i� E1A1�ν>t� = �1− p� E1A exp �−p3t� ;

�ii� E1A1�ν≤t� = p E1A exp
{
�1− p�3t + θWt −

θ2

2
t

}
:
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Proof. Equality (i) follows by straightforward calculations. For A ∈ F W
t ,

E1A1�ν≤t� = EZt1A1�ν≤t�

= E
[
1A1�3t≥V� exp

{
θWt −

θ2

2
t+V

}]

= E
[
1A exp

{
θWt −

θ2

2
t

}(∫ 3t
0
evρ�dv�

)]

= pE
(

1A exp
{
θWt −

θ2

2
t+ �1− p�3t

})
:

This proves (ii). 2

From Lemma 1 we immediately come to the following conclusion:

Lemma 2.

πt =
p exp

{
3t + θWt − �θ2/2�t

}

p exp �3t + θWt − �θ2/2�t� + �1− p� :

According to Lemma 2 the process πt is an isotonic function of the cusum
statistic Yt given by

Yt x= max
0≤s≤t

{
θWt − θWs −

θ2

2
t+ θ

2

2
s

}

= θWt −
θ2

2
t+ 3t :

Let W denote the innovation process defined by

�1� Wt =Wt − θ
∫ t

0
πs ds :

The innovation process W is adapted to the filtration �F W
t y 0 ≤ t <∞� and is

a standard Brownian motion under P [see Kallianpur (1980), pages 192–199].
Equation (1) yields

Yt = θ2
∫ t

0
πs ds+ θWt −

θ2

2
t+ 3t:

By application of Itô’s formula for continuous semimartingales [see, e.g.,
Karatzas and Shreve (1988), page 149] we arrive at

�2� dπt = θπt�1− πt�dWt + πt�1− πt�d3t;
with π0 = p. Now 3 is flat off �s� Ys = 0� [see, e.g., Karatzas and Shreve
(1988), page 210], so

∫ ∞
0

1�0;∞��Ys�d3s = 0
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and further, for all measurable functions h with h�0� = 0,
∫ ∞

0
h�Ys�d3s = 0:

Therefore, equation (2) yields, for all functions f which are twice continuous
differentiable in an open set containing �p;1� with f′�p� = 0,

f�πt� − f�p� = θ
∫ t

0
f′�πs�πs�1− πs�dWs

+ θ
2

2

∫ t
0
f′′�πs�π2

s �1− πs�2 ds:
(3)

4. Bayes optimality. Throughout this and the next section the expres-
sion “stopping time” always refers to a stopping time with respect to the fil-
tration �F W

t y 0 ≤ t <∞�. Let us introduce the risk function

R�T� = P�T < ν� −C1E�T ∧ ν� +C2E�T− ν�+;
where C1 and C2 are positive constants. Note that Eν < +∞. Thus R�T� is
defined for all stopping times T. Further, we have R�T� = +∞ if P�T = ∞� >
0. Let us now define two functions f1 and f2 on �0;1� by

f1�x� x=
2
θ2

∫ x
p

∫ y
p
z−2�1− z�−1 dzdy

and

f2�x� x=
2
θ2

∫ x
p

∫ y
p
z−1�1− z�−2 dzdy:

Let g denote the function on �0;1� defined by

g�x� x= �1− x� −C1f1�x� +C2f2�x�:
For A > 0, let NA denote the stopping time defined by

NA x= inf�t� Yt ≥ A�:
This is the usual cusum procedure.

Theorem 1. Let A∗ = ln�p∗/�1 − p∗�� − ln�p/�1 − p��, where p∗ is the
unique solution in �p;1� of g′�x� = 0. Then, for the cusum procedure NA∗ ,

NA∗ = inf�t� Yt ≥ A∗�;
R�NA∗� = inf

T
R�T�;

where the infimum on the right-hand side is taken over all stopping times T.

The main idea of the proof of Theorem 1 is to reformulate our problem.
We rewrite the risk R�T� for bounded stopping times T as the expectation of
g�πT�, where g is a function with a unique minimum on �p;1�. Lemmas 3
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and 4 below establish this alternative formulation of R�T�. Lemma 5 states
the necessary property of the function g just mentioned.

Lemma 3. For all stopping times T,

R�T� = E�1− πT�1�T<∞� −C1E
∫ T

0
�1− πt� dt+C2E

∫ T
0
πt dt:

Lemma 3 can be proved in the same way as the corresponding statement
in Shiryayev [(1973), page 161].

The functions f1 and f2 defined above are solutions of the differential equa-
tions

θ2

2
x2�1− x�2f′′1�x� = �1− x�

and

θ2

2
x2�1− x�2f′′2�x� = x:

The properties of f1 and f2 yield, together with (3),
∫ t

0
�1− πs�ds = f1�πt� − θ

∫ t
0
f′1�πs�πs�1− πs�dWs

and
∫ t

0
πs ds = f2�πt� − θ

∫ t
0
f′2�πs�πs�1− πs�dWs;

where both equalities hold P-a.s.. The stochastic integrals on the right-hand
side are martingales, because [see Karatzas and Shreve (1988), page 139]

E
∫ t

0
f′i�πs�2π2

s �1− πs�2 ds <∞

for i = 1;2 and all t ≥ 0. The optional stopping theorem thus implies

E
∫ T

0
f′i�πs�πs�1− πs�dWs = 0

for i = 1;2 and for all bounded stopping times T. This yields the following
lemma:

Lemma 4. For all bounded stopping times T,

R�T� = E ��1− πT� −C1f1�πT� +C2f2�πT�� = Eg�πT� :

Lemma 5. There exists a unique p∗ ∈ �p;1� with g�p∗� ≤ g�x� for all
x ∈ �p;1�.
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Proof. For x ∈ �0;1�,
θ2

2
g′′�x� = 1

x2�1− x�2 �x�C1 +C2� −C1� :

For C1 = 0, the function g is strictly convex and from limx→1 g�x� = +∞ and
g′�p� = −1 the assertion follows.

Now let C1 > 0. Then

g′′�x� < 0 for x ∈
(

0;
C1

C1 +C2

)
;

g′′�x� > 0 for x ∈
(

C1

C1 +C2
;1
)

and g′′�C1/�C1+C2�� = 0. Rolle’s theorem therefore yields that g′ has at most
two zeros in (0, 1). Now g′�p� = −1 and limx→1 g

′�x� = limx→0 g
′�x� = +∞

imply that there exist p1 ∈ �0; p� and p2 ∈ �p;1� with g′�p1� = g′�p2� = 0.
Because g is continuous and limx→1 g�x� = +∞, g assumes its minimum over
�p;1� at least at one point. By g′�p� < 0, such points lie in the interior. Hence
the function g assumes its minimum over �p;1� uniquely at p∗ = p2. 2

We now proceed with the proof of Theorem 1. From Lemmas 4 and 5, we
immediately infer that

R�T� ≥ g�p∗�
holds for all bounded stopping times T. This inequality extends to arbitrary
stopping times. Let

T∗ x= inf
{
t� πt ≥ p∗

}
:

In order to complete the proof of Theorem 1, it is now only left to show that

R�T∗� = g�p∗�:
We have P�T∗ < ∞� = 1. This follows immediately from the fact that πt
converges P-a.s. to 1 for t→∞, which can be shown in the same way as the
corresponding statement of Shiryayev [(1973), page 153]. Now

lim
n→∞

g�πT∗∧n� = g�πT∗� = g�p∗� P-a.s.

The function g is bounded on �p;p∗� and, therefore,

R�T∗� = lim
n→∞

R�T∗ ∧ n� = g�p∗�:

The stopping time T∗ is obviously a cusum procedure NA with threshold A =
A∗ given by

A∗ = ln�p∗/�1− p∗�� − ln�p/�1− p��:
The last identity follows immediately from Lemma 2. This completes the proof
of Theorem 1.



BAYES PROPERTIES OF CUSUM PROCEDURE 1811

5. Minimax optimality. For 0 ≤ t < ∞, let Pt denote the probability
measure on F W

∞ which corresponds to a change in the drift of W from 0 to θ at
time t. From now on we will writeP∞ instead of µW. For simplicity of notation,
the expectation with respect to Pt is denoted by Et and the expectation with
respect to P∞ is denoted by E∞. For arbitrary γ ≥ 0, let S �γ� denote the class
of all stopping times N with E∞N ≥ γ. We shall now consider various values
of p, C1 and C2 and thus like to indicate the dependence of A∗ on p, C1 and
C2 as well as the dependence of P on p. Therefore, we write A∗�p;C1;C2�
and Pp.

Lemma 6. Given p ∈ �0;1� and A > 0, there exist constants C1�p;A� > 0
and C2�p;A� > 0 such that

�i� A∗�p;C1�p;A�;C2�p;A�� = A;
�ii� 1−C1�p;A�E∞NA −C2�p;A�E0NA = 0:

Proof. The assertion is equivalent to solving a system of two linear equa-
tions in C1 and C2. The assertion therefore follows from Cramer’s rule. 2

Choosing C1�p;A� and C2�p;A� according to Lemma 6, we can follow the
arguments of Ritov and therefore obtain the minimax optimality of the cusum
procedure NA in the sense of Lorden (1971).

Theorem 2. Let A > 0. Then, for all N ∈ S �E∞�NA��, the following
statement holds:

sup
t≥0

ess-sup Et

(
�N− t�+�F W

t

)

≥ sup
t≥0

ess-sup Et

(
�NA − t�+�F W

t

)
:

Remark. Our method to construct the measures Pp works for arbitrary
random variables τ, which are randomized stopping times with respect to
the process W. By the use of Girsanov’s theorem one can find a probability
measure Pτ under which Wt − θ�t − τ�+ is a standard Brownian motion. So
under Pτ the observed process W is a Brownian motion process which has
drift zero during the random time interval �0; τ� and drift θ during �τ;∞�.
We can now consider the same decision theoretic problem as in Ritov (1990).
Nature chooses τ and thus determines Pτ, whereas the statistician chooses
any stopping time T with respect to W. The loss structure is taken as

P∞�T < τ� −C1E∞T ∧ τ +C2Eτ�T− τ�+:
Equalities (i) and (ii) of Lemma 6 then imply that the pair of strategies
�NA;Pp� is a saddle point for this game if C1 and C2 are taken as C1�p;A�
and C2�p;A�. This can be shown in a similar way as the corresponding state-
ment in Ritov (1990).
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