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Abstract. This work deals with the communication complexity of se-
cure multi-party protocols for linear algebra problems. In our model,
complexity is measured in terms of the number of secure multiplications
required and protocols terminate within a constant number of rounds of
communication.

Previous work by Cramer and Damg̊ard proposes secure protocols for
solving systems Ax = b of m linear equations in n variables over a finite
field, with m ≤ n. The complexity of those protocols is n5.

We show a new upper bound of m4 + n2m secure multiplications for
this problem, which is clearly asymptotically smaller. Our main point,
however, is that the advantage can be substantial in case m is much
smaller than n. Indeed, if m =

√
n, for example, the complexity goes

down from n5 to n2.5.
Our secure protocols rely on some recent advances concerning the

computation of the Moore-Penrose pseudo-inverse of matrices over fields
of positive characteristic. These computations are based on the evalua-
tion of a certain characteristic polynomial, in combination with varia-
tions on a well-known technique due to Mulmuley that helps to control
the effects of non-zero characteristic. We also introduce a new method
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for secure polynomial evaluation that exploits properties of Chebychev
polynomials, as well as a new secure protocol for computing the charac-
teristic polynomial of a matrix based on Leverrier’s lemma that exploits
this new method.

1 Introduction

This paper deals with secure multi-party computation (MPC), that is, with the
scenario in which n players want to compute an agreed function of their secret
inputs in such a way that the correct result is obtained but no additional in-
formation about the inputs is released. These requirements should be achieved
even in the presence of an adversary who is able to corrupt some players. The
power of a passive adversary is limited to see all internal data of the corrupted
adversaries, while an active one can control their behavior.

Multi-party computation protocols can be classified according to which model
of communication is considered. In the cryptographic model, first considered
in [21,11], the adversary can see all messages in the network and the security
must rely on some computational assumption. Unconditional security can be
achieved if the existence of a private channel between every pair of participants
is assumed. This is the information-theoretic model introduced in [5,6]. It is
well known that in both models any functionality can be securely evaluated —
if evaluating the functionality is efficient, so is the secret multi-party protocol.
However, generic solutions may need polynomial many rounds of communica-
tion between the participating players, whereas in practise one wants the round
complexity to be as small as possible, preferably constant.

For conditionally secure multi-party protocols in the cryptographic model,
every probabilistic polynomial-time functionality can be efficiently and privately
evaluated in a constant number of communication rounds [22,3]. The situation
is completely different for unconditionally secure multi-party protocols in the
information-theoretic model. Up to now it is not known yet which class of func-
tions can be efficiently computed in a constant number of rounds. Some progress
in the direction of solving that question was made in [1,9,12,13,2] but, for in-
stance it is not even known if all functions in basic classes like NC can be securely
evaluated in constant rounds.

For specific functions of interest from linear algebra, Cramer and Damg̊ard [7]
proposed constant round multi-party computation protocols in the information-
theoretic model. Among their considered functions are the determinant, the char-
acteristic polynomial, the rank of a matrix, and solving a linear system of equa-
tions. The advantage with the approach from [7] is that all protocols could be
tailor-made to the nature of the specific problem and, in contrast to the generic
solutions, did not have to rely on circuit-based secure gate evaluation techniques.

1.1 Our Results

This work deals with the communication complexity of secure multi-party proto-
cols for linear algebra problems. In our model, complexity is measured in terms
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of the number of secure multiplications required and protocols terminate within
a constant number of rounds of communication.

Assuming a model in which constant round protocols for basic arithmetic
operations are given as usual, previous work by Cramer and Damg̊ard proposes
secure protocols for solving systems Ax = b of m linear equations in n variables
over a finite field, with m ≤ n. The complexity of those protocols is n5. Since
a solution in [7] could only be obtained for square matrices the general case of
non-square matrices had to be reduced to solving linear systems for the case of
an n×n matrix which is potentially huge compared to the original m×n matrix
A. The protocol for the latter problem basically reduces to computing n times
the characterstic polynomial which is shown in [7] to be securely computable in
constant rounds and with (roughly) n4 complexity (n4 calls to the multiplication
protocol). Therefore the overall complexity of the proposed protocol to solve the
linear system Ax = b is n5.

We show a new upper bound of m4 + n2m secure multiplications for this
problem, which is clearly asymptotically smaller. Our main point, however, is
that the advantage can be substantial in case m is much smaller than n. Indeed,
if m =

√
n, for example, the complexity goes down from n5 to n2.5.

As a concrete motivating application we consider the secure multi-party vari-
ant of the travelling salesman problem from combinatorial optimization. Given
a number of t cities and the costs of travelling from any city to any other city,
what is the cheapest round-trip route that visits each city exactly once and then
returns to the starting city?1 In a multi-party scenario the participating players
may want to keep the travelling cost between two cities belonging to “their ter-
ritory” secret such that only the concrete round-trip is revealed to everybody.
It is well known [20, Vol 2, Chap. 58.4] that this problem can be reduced us-
ing integer linear programming to simultaneously solving two systems of linear
equations, each of size m × n, where n = 2t · 2m ≈ 2m and m ≤ t2 is the number
of edges in the graph representing the cost-matrix between the t cities. Hence,
in this (admittingly extreme) example complexity of our protocol is ≈ (2m)2,
compared to the (2m)5 protocol from [7].

Our secure protocols rely on some recent advances concerning the computation
of the Moore-Penrose pseudo-inverse of matrices over fields of positive character-
istic. These computations are based on the evaluation of a certain characteristic
polynomial, in combination with variations on a well-known technique due to
Mulmuley that helps to control the effects of non-zero characteristic. We also in-
troduce a new method for secure polynomial evaluation that exploits properties
of Chebychev polynomials, as well as a new secure protocol for computing the
characteristic polynomial of a matrix based on Leverrier’s lemma that exploits
this new method. These techniques may be of separate interest, and are central
to our claimed improvements.

Below we give a more detailed overview of the techniques used. If A is an
n × m matrix over a field K, a pseudoinverse of A is any m × n matrix B such

1 Since the travelling salesman problem is known to be NP-complete, for the purpose
of this motivating example one may think of a small amount of cities t.
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that ABA = A and BAB = B. Note that in case A is a non-singular square
matrix then B = A−1. A linear system of equations Ax = b can be easily solved
if a pseudoinverse of A is given. First of all, the system has a solution if and
only if ABb = b. In this case, x0 = Bb is a particular solution and, since the
columns of the matrix Im − BA span kerA, the general solution of the system
is obtained.

Our secure MPC protocol to solve linear systems of equations applies the
results and techniques from [10] about using of the Moore-Penrose pseudoinverse
for solving linear systems of equations over arbitrary fields. Specifically, there
is a polynomial that, evaluated on the Gram matrix G = A�A, (where A�

denotes the transpose of A) makes it possible to efficiently compute in MPC the
Moore-Penrose pseudoinverse of A. The polynomial in turn is derived from the
characteristic polynomial of G = A�A. Here our secure polynomial evaluation
protocol based on Chebyshev polynomials can be used to perform the secure
evaluation.

Nevertheless, the Moore-Penrose pseudoinverse of a matrix A exists if and only
if the subspaces kerA and ImA have trivial intersection with their orthogonals,
and unfortunately this may not be the case if the field has positive characteristic.
This problem is solved by using some techniques from [10], based on results by
Mulmuley [17]. Namely, there exists a random invertible diagonal matrix that,
with high probability, transforms the matrix A into a matrix A′ having the
required properties on the subspaces kerA′ and ImA′.

Computing the Moore-Penrose pseudoinverse in particular involves secure
evaluation of a public (or secret) polynomial in a secret field element (or a
secret matrix). Motivated by this and maybe of independent interest, we present
a constant round MPC protocol for the above task. If the field element (or the
matrix) is guaranteed to be invertible this can be done using the well-known
technique of unbounded fan-in multiplication [1]. In the general case of non-
zero field elements a generic framework from [1] can be applied. However, the
latter technique boosts the complexity of the resulting protocol from linear to
quadratic in the degree d of the polynomial. One the other hand, if one admits
some small probability of information leakage then the protocol can be made
linear in d using certain randomization techniques.

We present an alternative protocol for the same task which is perfectly secure
and has complexity linear in the degree d. The basic idea is explained in the
following. Consider a matrix M(x) whose entries are polynomials over a finite
field F and such that M(α) is invertible for every α ∈ F. Specifically, we present
a 2 × 2 matrix M(x) such that in the top-left entry of M(2x)M i−1(x) we have
the ith Chebyshev polynomial Ti(x). Since the first d+1 Chebyshev polynomials
{Ti(x)}0≤i≤d form a basis of the polynomials of degree at most d, every polyno-
mial of degree d is a linear combination the Chebyshev polynomials. Therefore
we can securely compute, even if α may be zero, F (α) for every polynomial F (x)
with degree at most d by using the unbounded fan-in multiplication protocol to
compute the needed powers of the matrix M(α).
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1.2 Related Work

Nissim and Weinreb [19] also considered the problem of securely solving a set of
linear equations in the computational two-party model, focusing on low (nearly
optimal) communication complexity. Their protocol needs O(n0.275) rounds of
communication which was later improved to O(log n) [15].

2 Preliminaries

2.1 The Model

We assume that n parties are connected by perfectly secure channels in a syn-
chronous network. Let Fp denote the finite field with p elements where p is a
prime power. We will assume throughout that p is large enough because our
protocols can only guarantee security with a probability 1 − O(n2/p), where n
is the maximum number of rows or columns in the matrices appearing in the
linear systems of equations.

By [a] we denote a secret sharing of a ∈ Fp over Fp. We assume that the
secret-sharing scheme allows to compute a sharing [a+b] from [a] and [b] without
communication, and that it allows to compute [ab] from a ∈ Fp and [b] without
communication; we write

[a + b] ← [a] + [b] and [ab] ← a[b]

for these operations. The secret-sharing scheme should of course also allow to
take a sharing [c] and reveal the value c ∈ Fp to all parties; We write c ←
reveal([c]).

We also assume that the secret sharing scheme allows to compute a sharing
[ab] from [a] and [b] with unconditional security. We denote the multiplication
protocol by mult, and write

[ab] ← mult([a], [b]) .

We will express the protocols’ round complexities as the number of sequential
rounds of mult invocations — and their communication complexities as the
overall number of mult invocations. I.e., if we first run a copies of mult in
parallel and then run b copies of mult in parallel, then we say that we have
round complexity 2 and communication complexity a + b. Note that standard
linear (verifiable) secret-sharing schemes have efficient constant-rounds protocols
for multiplication.

For a matrix A ∈ F
n×m
p = (Aij)1≤i≤n,1≤j≤m we will use [A] =

([Aij ])1≤i≤n,1≤j≤m for a sharing of a matrix. For multiplication of two ma-
trices A ∈ F

n×k
p , B ∈ F

k×m
p of matching dimensions we simply write [C] ←

mult([A], [B]), where C = AB ∈ F
n×m
p . Matrix multiplication has to be un-

derstood componentwise and can be carried out in one round and nmk parallel
invocations of the multiplication protocol.
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For our protocols to be actively secure, the secret sharing scheme and the
multiplication protocol should be actively secure. This in particular means that
the adversary structure must be Q2. By the adversary structure we mean the
set A of subsets C ⊂ {1, . . . , n} which the adversary might corrupt; It is Q2 if
it holds for all C ∈ A that {1, . . . , n} \ C �∈ A.

2.2 Some Known Techniques

The following known techniques will be of importance later on.

Random Elements. The parties can share a uniformly random, unknown field
element. We write [a] ← ran(). This is done by letting each party Pi deal a
sharing [ai] of a uniformly random ai ∈ Fp. Then the parties compute the sharing
[a] =

∑n
i=1[ai]. The communication complexity of this is given by n dealings,

which we assume is upper bounded by the complexity of one invocation of the
multiplication protocol.

If passive security is considered, this is trivially secure. If active security is
considered and some party refuses to contribute with a dealing, the sum is just
taken over the contributing parties. This means that the sum is at least taken
over ai for i ∈ H , where H = {1, . . . , n} \ C for some C ∈ A. Since A is Q2 it
follows that H �∈ A. So, at least one honest party will contribute to the sum,
implying randomness and privacy of the sum.

Random Invertible Elements. Using [1] the parties can share a uniformly random,
unknown, invertible field element along with a sharing of its inverse. We write
([a], [a−1]) ← ran

∗() and it proceeds as follows: [a] ← ran() and [b] ← ran().
[c] = mult([a], [b]). c ← reveal([c]). If c �∈ F

∗
p, then abort. Otherwise, proceed

as follows: [a−1] ← c−1[b]. and output ([a], [a−1]).
The correctness is straightforward. As for privacy, if c ∈ F

∗
p, then (a, b) is

a uniformly random element from F
∗
p × F

∗
p for which ab = c, and thus a is a

uniformly random element in F
∗
p. If c �∈ F

∗
p, then the algorithm aborts. This

happens with probability less than 2/p. The complexity is (at most) 2 rounds
and 3 invocations of mult.

Unbounded Fan-In Multiplication. Using the technique from [1] it is possible
to do unbounded fan-in multiplication in constant rounds. For the special case
where we compute all “prefix products”

∏m
i=1 ai (m = 1, . . . , �), we write

([a1], . . . , [(a1a2 · · · a�)]) ← mult
∗([a1], . . . , [a�]) .

In the following, we only need the case where we have inputs [a1], . . . , [a�], where
ai ∈ F

∗
p. For 1 ≤ i0 ≤ i1 ≤ �, let ai0,i1 =

∏i1
i=i0

ai. We are often only interested in
computing a1,�, but the method allows to compute any other ai0,i1 at the cost of
one extra multiplication. For the complexity analysis, let A denote the number
of ai0,i1 ’s which we want to compute.

First run ran
∗ �+1 times in parallel, to generate [b0 ∈R F

∗
p], [b1 ∈R F

∗
p], . . . , [b�

∈R F
∗
p], along with [b−1

0 ], [b−1
1 ], . . . , [b−1

� ], using 2 rounds and 3(�+1) invocations
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of mult. For simplicity we will use the estimate of 3� invocations. Then for i =
1, . . . , � compute and reveal [di] = mult([bi−1], [ai], [b−1

i ]), using 2 rounds and 2�

invocations of mult. Now we have that di0,i1 =
∏i1

i=i0
di = bi0−1(

∏i1
i=i0

ai)b−1
i1

=
bi0−1ai0,i1b

−1
i1

, so we can compute [ai0,i1 ] = di0,i1mult([b−1
i0−1], [bi1 ]), using 1

round and A invocations of mult. The overall complexity is 5 rounds and O(�+a)
invocations of mult.

The same concept generalizes to unbounded fan-in multiplication of matrices.
Let shares [Mi] of matrices Mi ∈ F

m×m
p be given. Again we write

([M1], . . . , [(M1M2 · · · M�)]) ← mult
∗([M1], . . . , [M�]) .

for the special case where we compute all “prefix matrix products”
∏k

i=1 Mi

(k = 1, . . . , �). The above protocol generalizes to the matrix case, where a random
invertible field element now translates to a random invertible matrix. Random
invertible matrices are created using the same the method as generating a shared
random invertible field element.

Equality. We define the equality function δ : Fp → Fp as δ(x) = 0 if x = 0
and δ(x) = 1 otherwise. Given a shared value [x], there exists a protocol [8,18]
that computes, in a constant number of rounds and using O(log p) calls to the
multiplication protocol mult, shares [δ(x)]. We write [y] ← eq([x]).

3 Secure Polynomial Evaluation

In this section we are interested in the natural problem of secure polynomial
evaluation: the players hold a public (shared) polynomial F of maximal public
degree d and a shared field element x. The goal is to securely evaluate F in x,
i.e. to compute shares [F (x)].

Based on known techniques [1,4] the latter shares can be computed in constant
rounds and quadratic complexity, i.e. the protocol makes O(d2) calls to the
multiplication protocol.

Surprisingly, as we will show in this section, Chebyshev polynomials of the first
and the second kind can be used as a mathematical tool to bring the complexity
of the above problem down to linear. We will first consider the simpler case
where the polynomial F (X) is publicly known and later reduce the case of a
shared polynomial to the latter one.

3.1 Known Solution

First we present a näıve protocol based on known techniques with linear com-
plexity. Unfortunately, as we will see, the protocol leaks information for the
interesting case when the polynomial gets evaluated at zero.

The protocol is given a shared value [x], where x ∈ F
∗
p and a public polynomial

F (X) =
∑d

i=0 aiX
i. The protocol’s task is to compute shares [F (x)]. First, it

computes ([x], [x2], . . . , [xd]) ← mult
∗
p([x], . . . , [x]) and then the share [F (x)]



620 R. Cramer, E. Kiltz, and C. Padró

can be computed without interaction as [F (x)] ← a0 + a1[x] +
∑d

i=2 ai[xi]. The
complexity is constant rounds and 6d = O(d) invocations of the multiplication
protocol mult. Privacy follows since we assumed x ∈ F

∗
p and hence we can apply

the protocol mult
∗ securely. On the other hand, if x �∈ F

∗
p then this fact will

leak throughout the application of protocol mult
∗.

As already done in [1], using a technique from [4], the general case (where the
input may be equal to zero) can be reduced to unbounded fan-in multiplication of
non-singular 3×3 matrices as we will sketch now. Later we will give an alternative
protocol for the same task with improved running time. The main result from [4]
states that every algebraic formula Φ of depth l can be expressed as the product
of O(4l) non-singular 3×3 matrices over Fp (in the sense that the value Φ(x) can
be read from the right top corner of the matrix product). Since any polynomial
F (X) of degree d can be expressed as an algebraic formula of depth log d, F (X)
can be expressed as the product of O(d2) such non-singular 3 × 3 matrices. The
appearing matrices are either one of five (known) constant matrices or are the
identity matrix with x in the right upper corner. Using an efficient constant round
protocol for multiplying non-singular constant size matrices we imply that there
there exists a protocol that privately computes shares [F (x)], where x may equal
to zero. The protocol runs in a constant number of rounds and O(d2) invocations
of mult.

If we admit some small probability of information leakage we can get a O(d)
protocol for the same task as follows. First choose a random field element [c] ←
ran() and compute the share [x+ c]. Then compute ([x+ c], [(x+ c)2], . . . , [(x+
c)d]) ← mult

∗
p([x+ c], . . . , [x+ c]). This step is secure as long as x+ c �= 0 which

happens with probability 1 − 1/p (over all coin tosses of the ran protocol).
Then open the share [c] to obtain the field element c. Since the polynomials
(x + c)i (0 ≤ i ≤ d) form a basis for all polynomials of degree at most d we
can compute [F (x)] without interaction using F (x) =

∑d
i=0 λi(x + c)i, where

the coefficients λi can be computed by the players using only public information
(including the value c). The protocol runs in a constant number of rounds and
O(d) invocations of mult. However, it leaks information about x with probability
1/p. In the remainder of this section we will develop a perfectly secure protocol
in O(d) invocations of mult.

3.2 Chebyshev Polynomials

We use Chebyshev polynomials of the first kind which satisfy the linear recur-
rence

Td(x) = 2xTd−1(x) − Td−2(x), d ≥ 2

with starting values T0(x) = 1 and T1(x) = x, and Chebyshev polynomials of
the second kind

Ud(x) = 2xUd−1(x) − Ud−2(x), d ≥ 2

with starting values U0(x) = 1 and U1(x) = 2x. For notational convenience we
also set Td(x) = Ud(x) = 0 for any d < 0. It is well known that the Chebyshev
polynomials Ti(x), 0 ≤ i ≤ d form a basis for all polynomials of degree at most
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d. I.e., there exist coefficients λi ∈ Fp such that every polynomial F of degree at
most d given in its monomial representation F (x) =

∑d
i=0 aix

i can be expressed
in the Chebyshev basis as

F (x) =
d∑

i=0

λiTi(x) . (1)

The coefficients λi only depend on the polynomial F , but not on x. (All λi’s can
be computed from the ai’s in O(d2 log2 p) bit operations using, for instance, the
recursive formulas from [16].)

For x ∈ Fp define the 2 × 2 matrix M(x) over Fp as

M(x) =
(

x −1
1 0

)

,

and note that since det(M(x)) = 1, the matrix M(x) is always non-singular.

Claim. The following identity holds for any integer d ≥ 1:

M(x)Md−1(2x) =
(

Td(x) −Td−1(x)
Ud−1(x) −Ud−2(x)

)

. (2)

We quickly prove the claim by induction over d. For d = 1 (2) is correct by
definition. Now assume (2) holds for an integer d ≥ 1. Then we have

M(x)Md(2x) = M(x)Md−1(2x) · M(2x) =
(

Td(x) −Td−1(x)
Ud−1(x) −Ud−2(x)

)

·
(

2x −1
1 0

)

,

=
(

2Td(x) · x − Td−1 −Td(x)
2Ud−1(x) · x − Ud−2(x) −Ud−1(x)

)

.

This shows (2) for d + 1.

3.3 Perfectly Secure Polynomial Evaluation of a Shared Field
Element

We now come to our improvement over the protocols from Section 3.1. We de-
sign an alternative protocol to evaluate a polynomial in a share with running
time linear in the degree d (instead of quadratic). The protocol does not leak
any information about the shared secret x. Using the results on the Chebychev
polynomials from the last section a protocol to securely evaluate a given public
polynomial F ∈ Fp[X ] of degree d in a share [x] is as follows: The players first
locally create matrix-shares [M(x)] and [M(2x)] from the share [x]. Then they
compute (component-wise and in parallel) matrix-shares [M(x)M i−1(2x)] for
1 ≤ i ≤ d by

([M(x)M(2x)], . . . , [M(x)Md−1(2x)]) ← mult
∗([M(x)], [M(2x)], . . . , [M(2x)]).
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Security is granted since M(x) and M(2x) are both non-singular. By Eq. (2), the
share [Ti(x)] can now be read in the upper left corner of the resulting matrices.

Once we are given shares of the Chebychev basis {Ti(x)}1≤i≤d we can evaluate
any given polynomial F of maximal degree d without interaction by computing
[F (x)] =

∑d
i=0 λi[Ti(x)]. Here λi are the coefficients from (1) that are computed

by each player in a precomputation phase. This leads to the following:

Proposition 1. Let a set of � public polynomials Fi ∈ Fp[X ] be given, all of
maximal degree d. There exists a multi-party protocol that, given shares [x] (for
any x ∈ Fp, possibly x = 0), computes all shares ([F1(x)], . . . , [F�(x)]). The
protocol runs in constant rounds and O(d) applications of the multiplication pro-
tocol.

It is easy to see that the given techniques can be extended to evaluate a shared
value x in a shared polynomial F , i.e. the shared F is given by shares of its
coefficients [ai], 1 ≤ i ≤ d. The protocol first computes shares [xi] for 1 ≤ i ≤ d
with the methods from Proposition 1 (here the ith polynomial Fi(X) is defined
as Fi(X) = X i). Then the polynomial F can be securely evaluated in x by first
computing all shares [aix

i] using d parallel applications of the multiplication
protocol and finally summing the products all up.

Theorem 1. Let a shared polynomial [F (X)] of maximal degree d (i.e., shared
field elements [a0], . . . , [ad] such that F (X) =

∑d
i=0[ai]X i) and a shared field

element [x] (for any x ∈ Fp, possibly x = 0) be given. There exists a perfectly
secure multi-party protocol that computes shares [F (x)] in constant rounds and
O(d) applications of the multiplication protocol.

3.4 Perfectly Secure Polynomial Evaluation of a Shared Matrix

In this section we generalize the results from the last sections to the case of
evaluating a shared matrix in a known/shared polynomial. Let a share [A] of a
matrix A ∈ F

m×m
p be given, together with a public polynomial F (x) of degree

d. We want to give a multi-party protocol that computed shares [F (A)]. With
known techniques, similar to the finite field case from Section 3.1 this can be
carried out using O(d2m3) applications of the multiplication protocol.

Analogously to Section 3.2, for an m × m matrix A we define the 2m × 2m
matrix M(A) over Fp as

M(A) =
(

A −Im

Im 0

)

,

where Im is the m × m identity matrix. We note that since det(M(A)) = 1,
M(A) is non-singular for each A ∈ F

m×m
p , including the special case of singular

A. Then again the following identity is easy to show by induction over d:

M(A)Md−1(2A) =
(

Td(A) −Td−1(A)
Ud−1(A) −Ud−2(A)

)

.
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Proposition 2. Let a set of � public polynomials Fi ∈ Fp[X ] of maximal degree
d and a shared m × m matrix [A] be given. There exists a perfectly secure multi-
party protocol that computes all shares ([F1(A)], . . . , [Fl(A)]) in constant rounds
and O(dm3) applications of the multiplication protocol.

Theorem 2. Let a shared polynomial [F (x)] of maximal degree d and a shared
m × m matrix [A] be given. There exists a perfectly secure multi-party protocol
that computes shares [F (x)] in constant rounds and O(dm3) applications of the
multiplication protocol.

4 Solving Linear Systems of Equations

In this section we provide the necessary mathematical framework for understand-
ing our algorithm. In particular, we present here the probabilistic algorithm to
solve linear systems of equations that will be implemented in Section 5 in a se-
cure multi-party computation protocol. This algorithm is based on the methods
presented in [10]. Specifically, we solve the linear system of equations Ax = b
by computing the Moore-Penrose pseudoinverse of the matrix A. Since we are
dealing with finite fields, we have to use the results by Mulmuley [17] to avoid
that certain subspaces have nontrivial intersection with their orthogonals.

4.1 Computing the Rank of a Matrix

Let K be a field. For every pair of vectors u, v ∈ K
n, we notate 〈u, v〉 for the

usual scalar product 〈u, v〉 =
∑n

i=1 uivi. If V ⊂ Kn is a subspace, we notate
V ⊥ = {u ∈ K

n : 〈u, v〉 = 0 for every v ∈ V }. Clearly, dimV ⊥ = n − dimV . It
is well known that V ⊥ ∩ V = {0} if K = Q or K = R. This does not hold in
general if K has positive characteristic.

If A is an n × m matrix over the field K , the Gram matrix of A is defined
by G(A) = A�A, where A� denotes the transpose of A. For every i = 1, . . . , m,
we take the vector ui ∈ K

n corresponding to the i-th column of A. Then, the
entries of the Gram matrix are the scalar products of these vectors, that is,
G(A) = (〈ui, uj〉)1≤i,j≤m.

Consider the vector spaces E = K
m and F = K

n and let A be an n×m matrix
over K representing a linear mapping A : E → F . Then, the transpose matrix
A� corresponds to a linear mapping A� : F → E such that 〈Ax, y〉 = 〈x, A�y〉
for every pair of vectors x ∈ E and y ∈ F . Then, kerA� = (Im A)⊥ and
Im A� = (kerA)⊥. The terminology we introduce in the following definition will
simplify the presentation.

Definition 1. A subspace V ⊂ K
n is said to be suitable if V ⊥ ∩ V = {0}.

We say that a matrix A is suitable if Im A is a suitable subspace, that is, if
(Im A)⊥ ∩ Im A = {0}.

Lemma 1. Let A be an n × m matrix over K and let G = A�A be its Gram
matrix. Then A is a suitable matrix if and only if kerG = kerA.
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Proof. Observe that kerA ⊂ kerG. If A is suitable and x ∈ kerG, then Ax ∈
Im A ∩ kerA� = Im A ∩ (Im A)⊥ = {0}. Conversely, if kerA = kerG and y =
Ax ∈ Im A ∩ (Im A)⊥, then x ∈ kerG = kerA, and hence y = 0.

Lemma 2. Let A be an n × m matrix over K and suppose that A and A� are
both suitable matrices. Let G = A�A and H = AA� be the Gram matrices of A
and A�, respectively. Then G and H are suitable matrices.

Proof. Since G is a symmetric matrix, Im G = (ker G)⊥. By applying Lemma 1,
Im G = (kerG)⊥ = (kerA)⊥ = Im A�. Since A� is suitable, (ImG)⊥ ∩ Im G =
{0}. Symmetrically, H is suitable as well.

Lemma 3. Let G be a symmetric m × m matrix and assume G is suitable.
Consider P (X) = det(XIm − G) = Xm + a1X

m−1 + · · · + am−1X + am, the
characteristic polynomial of G. Then rankG = max{i : ai �= 0}.

Proof. From Lemma 1, kerG2 = kerG. If r = max{i : ai �= 0}, the characteristic
polynomial of G is of the form P (X) = Xm−rQ(X) with Q(0) �= 0. Then
dim kerG = dim kerGm−r = m − r, and hence rankG = r.

From the previous lemmas the rank of the matrix A can be found by computing
the characteristic polynomial of the Gram matrix G(A) = A�A. Nevertheless,
we need that both A and A� are suitable matrices. If we are dealing with a field
with positive characteristic we cannot be sure that this is the case. We avoid this
problem by applying a random transformation to the matrix A that, with high
probability, produces a matrix with the same rank and verifying that property.
This can be done by using Theorem 3, due to Mulmuley [17], and Propositions 3
and 4.

Theorem 3. Consider the field K(x), a transcendental extension of the field
K, and the diagonal matrix Dx = diag(1, x, . . . , xn−1), which defines a linear
mapping Dx : K(x)n → K(x)n. Then for every subspace V ⊂ K, the subspace
Vx = Dx(V ′) ⊂ K(x)n, where V ′ ⊂ K(x)n is the natural extension of V , is
suitable. As a consequence, for every n×m matrix A over the field K, the matrix
DxA (over the field K(x)) is suitable.

The proofs of the next two propositions will be given in the full version.

Proposition 3. Let K be a finite field with |K| = p. Consider the vector space
F = K

n and a subspace V ⊂ F . For every α ∈ K , we consider the diagonal
matrix Dα = diag(1, α, α2, . . . , αn−1). If an invertible element α ∈ K

∗ is chosen
uniformly at random, then the probability that the subspace Vα = Dα(V ) ⊂ F is
suitable is at least 1 − 2n(n − 1)/p.

Proposition 4. Let K be a finite field with |K| = p and let A be an n × m
matrix over the field K. For every α ∈ K, take the diagonal matrices Dn,α =
diag(1, α, . . . , αn−1) and Dm,α = diag(1, α, . . . , αm−1), and the matrix Aα =
Dn,αADm,α. Then the probability that both Aα and A�

α are suitable matrices
if an invertible element α ∈ K

∗ is chosen uniformly at random is at least 1 −
(2/p)(n(n − 1) + m(m − 1)).
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4.2 Moore-Penrose Pseudoinverse

Consider the vector spaces E = K
m and F = K

n and let A be an n × m matrix
over K representing a linear mapping A : E → F . A pseudoinverse of A is any
m × n matrix B : F → E such that ABA = A and BAB = B. Given two
subspaces V, W ⊂ E, the notation E = V ⊕ W means that E is the direct sum
of V and W , that is, E = V + W and V ∩ W = {0}.

There can exist many different pseudoinverses of a matrix. If B is a pseudoin-
verse of A, then E = Im B⊕kerA and F = Im A⊕kerB. Moreover, for every pair
of subspaces V1 ⊂ E and V2 ⊂ F such that E = V1 ⊕ kerA and F = Im A ⊕ V2,
there exists a unique pseudoinverse B of A such that V1 = Im B and V2 = kerB.
Finally, there is at most one pseudoinverse B of A such that AB and BA are
symmetric matrices. This is the only pseudoinverse with Im B = (kerA)⊥ and
kerB = (Im A)⊥. Of course, such a pseudoinverse exists if and only if ker A ⊂ E
and ImA ⊂ F are suitable subspaces.

Definition 2. Let A be an n × m matrix corresponding to a linear mapping
A : E → F such that kerA ∩ (kerA)⊥ = {0} and ImA ∩ (Im A)⊥ = {0}, that
is, A and A� are suitable matrices. The Moore-Penrose pseudoinverse A† of A
is the unique pseudoinverse of A with Im A† = (kerA)⊥ and kerA† = (Im A)⊥.
Actually, the Moore-Penrose pseudoinverse of A can be defined too as the unique
m × n matrix A† : F → E such that AA†A = A, and A†AA† = A†, and AA†

and A†A are symmetric matrices.

Observe that the Moore-Penrose pseudoinverse of A can be defined only if A
and A� are suitable matrices. Assume that we are in this situation. We consider
G = A�A and H = AA�, the Gram matrices of A and A�. From Lemma 2, G
and H are suitable matrices with kerG = kerA and kerH = kerA�.

We present next a useful expression for A† in terms of the characteristic
polynomial of H or the one of G. Let f0 : Im A� → Im A be the linear mapping
obtained from the restriction of A : E → F to Im A� and let π : F → Im A be the
orthogonal projection over ImA. It is not difficult to check that f0 is invertible
and that A† = f−1

0 π. Consider r = rankA = rankA� = rankG = rankH .
From Lemma 3, the characteristic polynomial of H is of the form det(XIn −
H) = Xn + a1X

n−1 + · · · + arX
n−r with ar �= 0. Moreover, the characteristic

polynomial of G has the same coefficients as the one of H , that is, det(XIm −
G) = Xm + a1X

m−1 + · · · + arX
m−r. Consider a vector y ∈ F and take z =

Hry + a1H
r−1y + · · ·+ ar−1Hy + ary. By applying Cayley-Hamilton and taking

into account that kerH2 = kerH , we get that z ∈ kerH . Then, y = a−1
r z −

a−1
r (Hry+a1H

r−1y+ · · ·+ar−1Hy) = z1 +z2 with z1 = a−1
r z ∈ kerH = kerA�

and z2 ∈ Im H = Im A. Therefore, the orthogonal projection of y ∈ F on Im A
is π(y) = −a−1

r (Hry + a1H
r−1y + · · ·+ ar−1Hy). Now, taking into account that

f−1
0 AA� = A�, we get that

A† = f−1
0 π = −a−1

r f−1
0 (Hr + a1H

r−1 + · · · + ar−1H) =

= −a−1
r A�(Hr−1+a1Hr−2+· · ·+ar−1In) = −a−1

r (Gr−1+a1G
r−2+· · ·+ar−1Im)A�.
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The Moore-Penrose pseudoinverse can be used to solve a linear system of
equations of the form Ax = b, but we need that both A and A� are suitable
matrices. Nevertheless, by using Proposition 4, we can apply a random transfor-
mation to the matrix A to obtain a matrix Aα verifying this property with high
probability.

4.3 The Algorithm

Given the theoretical results from the preceding sections, we extract the following
probabilistic algorithm for solving linear systems of equations.

Algorithm Linsolve.
The input is A, y, m, n, where A ∈ F

n×m
p , y ∈ F

n
p , and m ≤ n

The output is x such that Ax = y and a bit s indicating if the system is
solvable.
1. Pick random α

R← Fp and create the n×n matrix Dn,α = diag(1, α, . . . ,
αn−1) and the m × m matrix Dm,α = diag(1, α, . . . , αm−1).

2. Compute Aα ← Dn,αADm,α and yα ← Dn,αy.
3. Compute G ← A�

α Aα ∈ F
m×m //G is a symmetric m × m matrix

4. Compute the coefficients (a1, . . . , am) of the characteristic polynomial
of G

5. Compute the rank r of G
6. Compute A†

α ← −a−1
r (Gr−1 + a1G

r−2 + · · · + ar−1Im)A�
α

7. Check if AαA†
αyα = yα. If not, the system has no solution, and the bit

s = 0 is returned.
8. If the system has a solution return s = 1 and x ← Dm,αA†

αyα.

Correctness of the algorithm is stated in the next lemma.

Lemma 4. Let A ∈ F
n×m
p , y ∈ F

n
p , and m ≤ n. Suppose that y ∈ Im A, that is,

that the system has a solution. Let x be the output of the randomized algorithm
Linsolve applied to A, y, m, n. Then, with probability at least 1−(2/p)(n(n−1)+
m(m − 1)), we have Ax = y.

Proof. Clearly, Ax = D−1
n,αAαD−1

m,αDm,αA†
αyα = D−1

n,αAαA†
αyα = D−1

n,αyα = y.

Until now we assumed m ≤ n. If n ≤ m, we should adapt the algorithm by using
H = AαA�

α instead of G to obtain A†
α. Since the obtained solution depends on

α, a random solution x0 of the linear system of equations Ax = y is obtained
but, clearly, the probability distribution is not uniform on the set of all possible
solutions. If we want the output of the algorithm to be uniformly distributed
among all possible solutions of the system, we can take a random vector z ∈ F

m
p

and compute x1 = x0 + Dm,α(Im − A†
αAα)z. Finally, observe that by picking at

random an m×m invertible matrix M and computing Dm,α(Im −A†
αAα)M , we

get a random element among all m × m matrices whose columns span kerA.
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5 The Secure Multi-party Protocols

Theorem 4. Let shares [A] of an n×m matrix and shares [y] of an n-dimensional
vector be given. There exists a multi-party protocol that, with probability at least
1 − O(n2/p), securely computes shares [x] of a solution to the system of linear
equations Ax = y and shares [s] of a bit indication if the system is solvable. The
protocol runs in constant rounds and uses O(m4 + m2n + m log p) applications of
the multiplication protocol.

We remark that the above protocol can easily be extended to yield shares of a
uniform solution of the system.

Theorem 5. Assume Fp has characteristic at least m. Let shares [A] of an
n × m matrix be given. There exists a multi-party protocol that, with probability
at least 1−O(n2/p), securely computes shares ([a1], . . . , [an]) of the characteristic
polynomial of A. The protocol runs in constant rounds and uses O(m4 + m2n)
applications of the multiplication protocol.

Proof of Theorem 4 (sketch). We show how to securely implement each step
of the protocol linsolve from Section 4.3 within the given complexity bounds.
We remark that, as a by-result, we also get efficient constant-round protocols for
securely computing the characteristic polynomial and the rank of a given shared
matrix. Details of the protocol are given in the full version of the paper. Instead
we give some intuition and mention the main techniques used.

For the first two steps the players jointly agree on a common public value
α. Since α is public, for computing shares of the appearing matrices there is no
further interaction needed. Computing shares of the characteristic polynomial in
Step 4 is done with the protocol from Theorem 5. In Step 5, shares of the rank
need to be computed that, by Lemma 3, can be derived from the characteristic
polynomial. Here we have to use several sequential applications of the equality
protocol eq to finally compute the rank in unary representation. Step 6 computes
shares of the Moore-Penrose pseudoinverse. Note that the formula to compute
A†

α explicitly depends on the rank r of matrix G. Since we do not know r in
the clear we need to develop a technique to obliviously evaluate the matrix G
in the correct polynomial. A first approach is to evaluate A†

α for all the possible
values of the rank r ∈ {1, . . . , m} and then sum the resulting matrices weighted
with the respective bit indicating if the summation index equals the rank. Note
that shares of the latter bits are known from the last step. However, the naive
complexity of this approach is m5. Using certain linearities in the coefficients
of the sums of the above polynomials we develop an alternative approach to
obtain the necessary complexity O(m4). Efficiency of this step heavily relies on
our efficient polynomial evaluation protocols proposed in Section 3. The rest of
the steps are more or less easy to implement. We mention that the complexity of
the protocol is dominated by Steps 4 and 6 (O(m4)), Step 5 (O(m · log p) for in
total O(m) applications of eq), and computing two products of an m × n with
an m×m matrix (O(m2n)) in Steps 3 and 6. Security of the protocol follows by
the security of the sub-protocols used.
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Proof of Theorem 5 (sketch). We assume we are given shares of a symmetric
square m × m matrix, if not apply the first three steps of the Linsolve protocol
using O(m2n) multiplications. Due to [7] there already exists a constant-round
protocol for computing shares of the characteristic polynomial. We present an al-
ternative and much simpler protocol based on Leverrier’s Lemma (see Lemma 5)
which basically says that the coefficients of the characteristic polynomial can be
retrieved by inverting a certain non-singular lower-triangular matrix S, where
each entry below the diagonal is the trace of the powers Gi of the matrix G.
Leverrier’s lemma is obtained by combining Newton’s identities with the fact
that these traces correspond to sums of powers of the characteristic roots.

Computing shares of all the m powers Gi of G can be done using the protocol
from Proposition 2 in O(m4) applications of the multiplication protocol. All the
traces of Gi can be locally computed by the players and assembled into the m×m
matrix S. Finally the players compute the inverse of the non-singular matrix S
using the protocol inv which enables them to compute the coefficients of the
characteristic polynomial. The total complexity of the protocol is O(m4 + m2n)
applications of the multiplication protocol and it runs in constant rounds. More
details will be given in Appendix A. Security of the protocol follows by the
security of the sub-protocols used.
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14. Jájá, J.: An Introduction to Parallel Algorithms. Eddison-Wesley (1992)
15. Kiltz, E., Mohassel, P., Weinreb, E., Franklin, M.: Secure linear algebra using

linearly recurrent sequences. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 291–310. Springer, Heidelberg (2007)

16. Krogh, F.T.: Efficient algorithms for polynomial interpolation and numerical dif-
ferentiationi. Math. Comput. 24, 185–190 (1970)

17. Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an
arbitrary field. Combinatorica 7, 101–104 (1987)

18. Nishide, T., Ohta, K.: Multiparty Computation for Interval, Equality, and Com-
parison without Bit-Decomposition Protocol. In: PKC 2007. LNCS, vol. 4450, pp.
343–360. Springer, Heidelberg (2007)

19. Nissim, K., Weinreb, E.: Communication efficient secure linear algebra. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876. Springer, Heidelberg (2006)

20. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer,
Heidelberg (2003)

21. Yao, A.: Protocols for secure computation. In: 23rd FOCS, Chicago, Illinois, No-
vember 3–5, 1982, pp. 160–164. IEEE Computer Society Press, Los Alamitos (1982)

22. Yao, A.: How to generate and exchange secrets. In: 27th FOCS, Toronto, Ontario,
Canada, October 27–29, 1986, pp. 162–167. IEEE Computer Society Press, Los
Alamitos (1986)

A Protocol for the Characteristic Polynomial

We assume we are given shares of a symmetric square m × m matrix (possibly
singular), if not apply the first three steps of the Linsolve protocol using O(m2n)
multiplications. We want to compute shares ([a1], . . . , [am]) of the characteristic
polynomial of G. With the techniques of Cramer and Damg̊ard [7] this can be
reduced to computing m times (in parallel) the determinant of a non-singular
matrix and applying polynomial interpolation to reconstruct the coefficients.
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Since securely computing the determinant can essentially be done by multiplying
two shared m × m matrices, which can be carried out in constant rounds and
using O(m3) applications of the multiplication protocol, the whole protocol runs
in constant rounds and O(m4) applications of the multiplication protocol. We
write

([a1], . . . , [am]) ← charpoly([G]).

We now describe an alternative and more simple approach with roughly the
same complexity based on Leverrier’s Lemma [14, Chapter 8]. For this technique
to work we will have to assume that the finite field’s characteristic is at least
m. Efficiency of this approach depends on the new secure polynomial evaluation
technique from Section 3. We note that the use of Leverrier’s Lemma in that
context was first proposed by M. Rabin in [7]. Our algorithm retrieves the co-
efficients of the characteristic polynomial by inverting a certain lower-triangular
matrix, where each entry below the diagonal is the trace of the powers Gi of the
matrix G. The following lemma is obtained by combining Newton’s identities
with the fact that these traces correspond to sums of powers of the characteris-
tic roots.

Lemma 5 (Leverrier’s Lemma). The coefficients a1, a2, . . . , am of the char-
acteristic polynomial of a matrix G satisfy

S ·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1
a2
a3
...

am−1
am

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1
s2
s3
...

sm−1
sm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, where S =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 . . . 0 0
s1 2 0 . . . 0 0
s2 s1 3 . . . 0 0
...

...
...

...
...

sm−2 sm−3 sm−4 . . . m − 1 0
sm−1 sm−2 sm−3 . . . s1 m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and si = tr(Gi) =
∑m

j=1 Gi
jj for all 1 ≤ i ≤ m.

Based on Leverrier’s Lemma we can securely compute shares of the characteristic
polynomial as follows: First the players compute shares of all the powers of G
using the protocol from Proposition 2 and then they locally compute shares
of the traces [si]. Then they apply the matrix inversion protocol to compute
[S−1] ← inv([S]), where S is the matrix from Lemma 5. Finally they calculate
shares of the matrix-vector product S−1 · (s1, s2, . . . , sm)� to obtain shares of
the characteristic polynomial. (Note that the matrix S is guaranteed to be non-
singular since for it’s determinant we have det(S) =

∏m
i=1 i which is non-zero

by our assumption that Fp has characteristic at least m.) Using the protocol
explained in Proposition 2 shares of all powers G, G2, . . . , Gm can be computed
in constant rounds and O(m · m3) = O(m4) applications of the multiplication
protocol. The protocol is secure with probability at least 1 − O(m2/p). This
proves Theorem 5.
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