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A NOTE ON SELF-BILINEAR MAPS

Jung Hee Cheon and Dong Hoon Lee

Abstract. Cryptographic protocols depend on the hardness of some
computational problems for their security. Joux briefly summarized kno-
wn relations between assumptions related bilinear map in a sense that
if one problem can be solved easily, then another problem can be solved
within a polynomial time [6].

In this paper, we investigate additional relations between them. First-
ly, we show that the computational Diffie-Hellman assumption implies the
bilinear Diffie-Hellman assumption or the general inversion assumption.
Secondly, we show that a cryptographic useful self-bilinear map does not
exist. If a self-bilinear map exists, it might be used as a building block
for several cryptographic applications such as a multilinear map. As a
corollary, we show that a fixed inversion of a bilinear map with homomor-
phic property is impossible. Finally, we remark that a self-bilinear map
proposed in [7] is not essentially self-bilinear.

1. Introduction

The Weil pairing on an elliptic curve have been used to solve cryptographic
problems such as the discrete logarithm (DL) problem, the computational
Diffie-Hellman (CDH) problem, the decisional Diffie-Hellman (DDH) problem
[8]. After Joux proposed tripartite Diffie-Hellman protocol using the Weil par-
ing, however, the Weil (or Tate) pairing is being used as a building block of
interesting cryptographic protocols including ID-based schemes, a short signa-
ture scheme, self-blindable credentials, and key agreement [5, 1, 4, 2, 11, 9].

The bilinear property of the pairings plays an important role on pairing-
based protocols. Given two groups G and H, a map e : G × G → H is said
to be bilinear if e(gx1

1 , gx2
2 ) = e(g1, g2)x1x2 for all xi ∈ Z and gi ∈ G. Given

a quadruple (g, gx, gy, gz) the bilinear Diffie-Hellman (BDH) problem asks to
find e(g, g)xyz.
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The security of most paring-based protocols relies on the BDH assumption,
that is, the BDH problem is computationally infeasible. Joux [6] briefly sum-
marized the relations between complexity assumptions in pairing-based cryp-
tography. In this paper, we show that an additional relation exists. More
precisely, the CDH assumption on H implies the BDH assumption or the gen-
eral inversion (GI) assumption which is defined in Section 2.

On the other hand, we investigate the possibility of the existence of inversion
of the bilinear map when one of inputs is fixed. We call such an inversion by
the fixed inversion (FI). We show that the fixed inversion with homomorphic
property does not exist by showing non-existence of a self-bilinear map, es :
G×G → G under the CDH assumption on G.

Recently, Lee presented a self-bilinear map L : A × A → A, where A is
a free R-module with rank two and R is a commutative ring with one [7].
However, the evaluation of L for a random input (s, t) is impossible unless the
decomposition of s and t with respect to generators is not known. Thus L is
not suitable to be used for other cryptographic applications. Moreover we can
rewrite L as a non self-bilinear map.

The rest of the paper is organized as follows: In Section 2, we introduce bi-
linear maps and several CDH and BDH related problems and recall the known
relations between assumptions. We present a new additional relation. In Sec-
tion 3, we describe a concept of a self-bilinear map and its applications. Unfor-
tunately we show that a cryptographic useful self-bilinear map does not exist
and comment about the self-bilinear map presented by Lee [7]. We conclude in
Section 4.

2. Bilinear map and hard problems

Throughout this paper, we denote G and H by cyclic groups of prime order
p. We use the multiplicative group notations.

2.1. Bilinear map

A map e : G × G → H is said to be bilinear provided that e(gx1
1 , gx2

2 ) =
e(g1, g2)x1x2 for all xi ∈ Z/pZ and gi ∈ G . We denote Z/pZ by Zp. The
Weil pairing for an elliptic curve is a good example of a bilinear map from an
additive group of an elliptic curve to a multiplicative group of a finite field. In
this paper, we assume that the bilinear map e has the following properties for
practical purposes:

(1) Non-degenerate: There exists a g ∈ G such that e(g, g) 6= 1.
(2) Efficient computable: There is a polynomially-bounded algorithm to

compute e(g1, g2) for any g1, g2 ∈ G.

In fact, the original Weil pairing does not satisfy the non-degeneracy, but a
modified Weil pairing defined over supersingular curve has the above properties.
A modified Weil paring is described in [1].
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There are lots of protocols based on the Weil (or Tate) pairing including
ID-based schemes, a short signature scheme, self-blindable credentials, and key
agreement [1, 2, 4, 5, 9, 11].

2.2. Hard problems and its relations

Usual standard cryptographic protocols based on the discrete logarithms
depend on one of the following assumptions for their security: the hardness
of the discrete logarithm problem (DL), of the computational Diffie-Hellman
problem (CDH), or of the decisional Diffie-Hellman problem (DDH).

• For any given two values g and gx, the problem which computes x is
called the discrete logarithm problem (DL).

• For any given two values gx1 and gx2 , the problem which computes
gx1x2 is called the computational Diffie-Hellman problem (CDH).

• For given two distributions {(gx1 , gx2 , gx1x2) | x1 and x2 are random}
and {(gx1 , gx2 , gr) | x1, x2 and r are random}, the problem which dis-
tinguishes the two distributions is called the decisional Diffie-Hellman
problem (DDH).

Since bilinear Diffie-Hellman assumption was introduced by Boneh-Franklin
[1], the security of most pairing-based protocols depends on the hardness of
following problems:

• For any given 4-tuple (g, gx1 , gx2 , gx3), the problem which computes
e(g, g)x1x2x3 is called the bilinear Diffie-Hellman problem (BDH).

• For given two distributions {(gx1 , gx2 , gx3 , hx1x2x3) | x1, x2 and x3 are
random} and {(gx1 , gx2 , gx3 , hr) | x1, x2, x3 and r are random}, where
h = e(g, g), the problem which distinguishes the two distributions is
called the decisional bilinear Diffie-Hellman problem (DBDH).

Joux considered the two types of inversion problem of the bilinear map, say
the fixed inversion (FI) and the general inversion (GI).

• For a fixed g ∈ G and any given h ∈ H, the problem which finds an
inverse image g′ such that e(g, g′) = h is called fixed inversion problem
(FI).

• For any given h ∈ H, the problem which finds a pair (g1, g2) such that
e(g1, g2) = h is called general inversion problem (GI).

Joux gives the summary of the relations between complexity assumptions
[6] (Figure 1). Each arrow in the figure goes from a complexity assumption to
a weaker one. In other words, if a problem of weaker assumption is solved then
so is a problem of stronger assumption.

2.3. Additional relation

Lemma 2.1. Let h, h̄ ∈ H for a cyclic group of order p. If we can solve CDH
problem with a base element h, then we can also solve CDH problem with a
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Figure 1. Relations between complexity assumptions in pair-
ing cryptography

base element h̄ using O(log2(p)) computations of CDH problem with respect to
h.

Proof. Suppose that we are given a triple (h̄, h̄x, h̄y) for any generator h̄ of H.
By assumption, we can easily compute CDH problem with respect to h. We
call such a function by CDHh.

Let h̄ = hs for some s ∈ Zp. Each of hs2i

= CDHh(h, hsi

, hsi

) and hsi+1
=

CDHh(h, hsi

, hs) can be computed. Hence hs−1
= hsp−2

requires O(log2 p)
computations of CDHh.

Since hs2xy = CDHh(h, hsx, hsy), h̄xy = CDHh(h, hs−1
, hs2xy) can also be

computed. ¤

Proposition 2.2. If GI problem and BDH problem on H are easy, it is possible
to solve CDH problem on H. Thus we have the additional following relation:

CDHH → BDH or GI.

Proof. Suppose that we are given a triple (h̄, h̄x, h̄y) for some h̄ of H. By
Lemma 2.1, it is enough to show that we can compute hs2xy, where h = e(g, g)
and h̄ = hs for some s.

We can find (g0, g1, g2, g3) such that

e(g0, g1) = h̄x and e(g2, g3) = h̄y

since GI problem is easy.
Let g0 = gt and gi = gai

0 for a positive integer t and ai’s. By assumption, we
can easily solve BDH problem. Thus we call such a function by BDH. Then
we can compute (hs2xy)t−1

as follows:

BDH(g, g1, g2, g3) = e(g, g)t3a1a2a3 = (hs2xy)t−1
.

Let (g4, g5) be an inverse image of (hs2xy)t−1
, i.e., e(g4, g5) = (hs2xy)t−1

.
Finally we can compute hs2xy as follows:

BDH(g, g0, g4, g5) = e(g, g)t4a1a2a3 = hs2xy. ¤
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3. Self-bilinear maps

Let e : G × G → H be a bilinear map. As usual we assume that CDH
problem on G is computationally infeasible for using cryptographic applica-
tions. Assume that a fixed inversion with homomorphic property exists. Such
an inversion induces an injective homomorphism φ : H → G. Then we can
construct a bilinear map es : G×G → G such that

es : G×G → G, (g1, g2) 7→ φ(es(g1, g2)).

Such a function is called self-bilinear map.
Self-bilinear maps might be useful in cryptographic applications. For exam-

ple, we can construct a multilinear map en : G×n → G by

en(g1, . . . , gn) = es(en−1(g1, . . . , gn−1), gn),

where e2 = es for any n ≥ 3. This multilinear map can be used to make a mul-
tiparty key agreement protocol and several useful cryptographic applications
[3].

3.1. Nonexistence of self-bilinear maps

Proposition 3.1. Let G be a cyclic group of prime order p. If we have an
efficiently computable non-degenerate bilinear map es : G × G → G, we can
solve CDH problem on G by O(log p) evaluation of es.

Proof. Let g ∈ G and es(g, g) = gt for a positive integer t. Given a triple
(g, gx, gy), one can compute gt−2

= gtp−3
by at most O(log p) times es-computa-

tions since e(gti

, gti

) = gt2i+1
and es(gti

, g) = gti+1
.

Therefore we can solve the CDH problem as follows:

es(es(gx, gy), gt−2
) = es(gtxy, gt−2

) = gxy. ¤

Corollary 3.2. Assume we have a non-degenerate bilinear map e : G×G → H
for two cyclic groups of prime order p. Then there is no injective homomor-
phism from H to G if the CDH problem on G is computationally infeasible.

Verheul showed in [10] that if there is an injective homomorphism from the
XTR subgroup to the associated supersingular curve, then the homomorphism
can be utilized to make an oracle which computes the DH problem over XTR
group. The proof technique is similar, but the above corollary gives the same
result in more general situation.

3.2. Remarks on the Lee’s self-bilinear map

Lee [7] presented a self-bilinear map L : A × A → A, where A is a free
R-module with rank two and proposed a few scheme based on the self-bilinear
map. Let (S, T ) be a generating pair for A. Lee also proposed key agreement
and digital signature based on the self-bilinear map.
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Consider elements P = a1S + b1T and Q = a2S + b2T , where a1, a2, b1, b2 ∈
R. Then L(P, Q) is defined by

L(P, Q) = (a1b2 − b1a2)(αS + βT )

for some fixed α, β ∈ R. It is easy to show that L is a bilinear map.
The proposed key agreement (A-ECDH) is as follows:
(1) Let (S, T ) be a pair of generators of A, which is a public system pa-

rameter. Alice and Bob select their private keys a and b at random
and compute associated public keys aS and bS respectively.

(2) Alice sends L(aS, T ).
(3) Bob computes K = b(aS) and h(K), where h is a cryptographic hash

function and sends J = h(K)L(bS, T ).
(4) Alice computes K = a(bS) and h(K). The shared secret computed by

Alice is ah(K)−1J = abL(S, T ). Also the secret computed by Bob is
bL(aS, T ). Therefore both Alice and Bob obtain the common secret.

The above scheme is not essentially based on the bilinear map. By the
definition of L, L(P, Q) cannot be evaluated for random elements P, Q ∈ A
unless the decomposition of P and Q with respect to (S, T ) is not given. Hence
L(aS, T ) cannot be computed by any one except Alice. This is equivalent that
Alice sends aU for a random value a and a fixed value U . Bob also sends bU for
a random value b. Then they can compute the common secret abU . Therefore
the above scheme is a just original elliptic curve Diffie-Hellman scheme.

In fact the bilinear map L can be stated as follows:

L : 〈S〉 × 〈T 〉 → 〈U〉
(aS, bT ) 7→ abU

for a pair of generators of A and a fixed value U ∈ A. Thus L is essentially not
a self-bilinear map.

4. Conclusion

Cryptographic protocols depend on the hardness of some computational
problems such as DL, CDH, DDH, BDH, and DBDH problem for their se-
curity. Joux briefly described the relations between complexity assumptions in
his survey paper [6]. We showed an additional relation exists.

Among the several trials on finding multilinear maps, one hopes to find a
self-bilinear map. If there is an injective homomorphism from H to G, we can
make a self-bilinear map. But we show that a self-bilinear map on G does not
exist under the CDH assumption on G. Thus such an injective homomorphism
cannot also exist. It is defined over a finitely generated free R-module A with
rank two. However we cannot evaluate L for random inputs unless the decom-
position of inputs with respect to the generators is known. This property is
not preferable to cryptographic applications. In fact we can rewrite the map
as a non self-bilinear map.
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