A Note on Series Parallel Irreducibility

by

BERNARD P. ZEIGLER*

Department of Computer and Communication Sciences The University of Michigan Ann Arbor, Michigan 48104

ABSTRACT

A new criterion for series-parallel irreducibility is given which makes no reference to underlying semigroups but involves only series-parallel connection operations.

A semi-automaton or transition system is a triple $\langle X, Q, M \rangle$ where X, Q are finite sets (of input symbols and internal states respectively), and $M: Q \times X \rightarrow Q$ is the transition function. (In the usual abuse of notation we write M for $\langle X, Q, M \rangle$.) In this note we shall characterize the semi-automata which are irreducible with respect to series-parallel decomposition. This augments the definition of Krohn and Rhodes [1] (see also Arbib's formulation in [2]), which in an essential way required the specification of output maps and thus held only for full automata, i.e., machines of the form $\langle S, Q, O, M, N \rangle$, where O is the outut set and N: $Q \rightarrow O$, the output function. Moreover, their definition of irreducibility for machines made direct reference to semigroups while the definition we shall give makes reference only to series-parallel connection operations. Except for changes in notation the presentation follows that of [2] (Chapters 3 and 5).

Let S(M) denote the semigroup of M, i.e.,

$$S(M) = \{ \widetilde{M}(, x) \colon Q \to Q | x \in X^* \},\$$

where \widetilde{M} is M extended to X^* . Given a semigroup S, let M_S denote the semigroup transition system, i.e., $M_S: S^1 \times S \to S^1$ with $M_S(1, s) = s$ and $M_S(s, s') = ss'$ for all $s, s' \in S$. Note that $S(M_S) = S$.¹

In the following we consider as usual only connected machines with specified starting state.

Given transition functions $M_i: Q_i \times X_i \to Q_i$, i = 1, 2, we say that M_2 divides M_1 (written $M_2|M_1$) if there exist $Q'_1 \subseteq Q_1$ and maps $g: X_2 \to X_1^*$, $h: Q'_1 \to Q_2$ (onto) such that

(1) Q'_1 is closed under $g(X_2)^*$ and

(2) for all $q_1 \in Q'_1$, $s \in X_2$, $h(\tilde{M}_1(q_1, g(s))) = M_2(h(q_1), s)$.

^{*} Research was sponsored by National Institutes of Health, Grant No. GM-12236-03; Office of Naval Research, Contract No. N00014-67-A-0181-011; and U.S. Army Research Office (Durham), Grant No. DA-31-124-ARO-D-483.

 $^{{}^{1}}S^{1}$ is the smallest monoid containing S.

Given $\langle X, Q, M \rangle$ and a positive integer *n* define $\Pi^n M = \langle X, Q^n, \Pi^n M \rangle$ by $\Pi^n M(q_1, \dots, q_n, s) = (M(q_1, s), \dots, M(q_n, s))$ for all $(q_1, \dots, q_n, s) \in Q^n \times X$. $\Pi^n M$ represents *n* copies of machine *M* (possibly in different states) which are run in parallel and are fed the same input symbol.

Definition. $M_2 \pi$ -divides $M_1 (M_2|_{\pi}M_1)$ if there is a positive integer *n* such that $M_2|\Pi^n M_1$. We remark that division, and π -division are transitive relations.

 M_2 mutually π -divides M_1 ($M_2 \equiv_{\pi} M_1$) if $M_2|_{\pi}M_1$ and $M_1|_{\pi}M_2$. We require the following statements.

- (1) $M_2|M_1$ implies $S(M_2)|S(M_1)|^2$
- (2) $S(M_2)|S(M_1)$ implies $M_2|M_{S(M_1)}$.
- (3) $M_{S(M)}|_{\pi}M.$
- $(4) \quad S(\Pi^n M) = S(M).$

Proofs may be found in Chapter 1 of [4]. Suffice it to say that (1) and (2) are well-known; (3) is a slight extension of Fact 2.14b, Chapter 5 of [3]. For (4) we note that

$$\Pi^{n}M(q_{1},\cdots,q_{n},x)=(\tilde{M}(q_{1},x),\cdots,\tilde{M}(q_{n},x)),$$

and examining the Myhill equivalences relations, we have

$$x \equiv_{\Pi^n M} y \Leftrightarrow \text{ for all } (q_1, q_2, \cdots, q_n) \in Q^n, \ \Pi^n M(q_1, \cdots, q_n, x) =$$
$$\widetilde{\Pi}^n M(q_1, \cdots, q_n, y)$$
$$\Leftrightarrow \text{ for all } q \in Q, \ \widetilde{M}(q, x) = \widetilde{M}(q, y)$$
$$\Leftrightarrow x \equiv_M y.$$

Hence $S(\Pi^n M) = X^* |\equiv_{\Pi^n M} = X^* |\equiv_M = S(M).$

PROPOSITION 1. $S(M_2)|S(M_1)$ if and only if $M_2|_{\pi}M_1$.

Proof. Assume that $S(M_2)|S(M_1)$. Then from (2), $M_2|M_{S(M_1)}$. Also from (3) $M_{S(M_1)}|_{\pi}M_1$ so by transitivity $M_2|_{\pi}M_1$.

Conversely, assume that $M_2|_{n}M_1$. Then for some n, $M_2|\Pi^n M_1$ so by (1) $S(M_2)|S(\Pi^n M_1)$. Recognizing that $S(\Pi^n M_1) = S(M_1)$ from (4) completes the proof.

We see that Proposition 1 allows re-interpretation of semigroup division in terms of π -division. This is not true for ordinary division; to make the converse of (1) hold, output maps have to be added to the semigroups as in Theorem 7.3.10 of [2]. The best that we can get from (1) and (2) is

(5) $S(M_2)|S(M_1)$ if and only if $M_2|M_{S(M_1)}$.

An interesting consequence of Proposition 1 is

COROLLARY 2. $M_1 \equiv_{\pi} M_2$ if and only if $S(M_1) \cong S(M_2)$. *Proof.* Apply Proposition 1 twice.

The standard definitions of irreducibility are:

(a) A semigroup S is *irreducible* if whenever $S|S_2 \times_Z S_1$ then $S|S_2$ or $S|S_1$. (Here $S_2 \times_Z S_1$ is a semidirect product of S_1 by S_2 with connecting map Z.)

²For semigroups S_i , $i = 1, 2, S_1 | S_2$ if S_1 is a homorphic image of sub-semigroup of S_2 .

(b) A machine M^{*} irreducible if whenever $M|M_2 \times_Z M_1$ then $M|M_2$ or $M|M_1$. (Here $M_2 \times_L M_1$ is the series-parallel cascade of M_1 followed by M_2 with connecting map Z.)

(c) A machine M is s-irreducible if whenever $M|M_2 \times_Z M_1$ then $M|M_{S(M_2)}$ or $M|M_{S(M_1)}$.

We add the definition:

(d) A machine M is π -irreducible if whenever $M|M_2 \times_Z M_1$ then $M|_{\pi}M_2$ or $M|_{\pi}M_1$.

Theorems 8.3.6 and 8.3.7 ([2], p. 4) state that M is *s*-irreducible if and only if S(M) is irreducible. On the other hand, while M is irreducible implies S(M) is irreducible, the converse does not hold.³ Using on Proposition 1 we can now show that the equivalence does hold for π -irreducibility.

THEOREM 3. M is π -irreducible if and only if M is s-irreducible.

Proof. M is π -irreducible \Leftrightarrow if $M|M_2 \times_Z M_1$ then $M|_{\pi}M_2$ or $M|_{\pi}M_1 \Leftrightarrow$ if $M|M_2 \times_Z M_1$ then $S(M)|S(M_2)$ or $S(M)|S(M_1)$ (from Proposition 1) \Leftrightarrow if $M|M_2 \times_Z M_1$ then $M|M_{S(M_2)}$ or $M|M_{S(M_1)}$ (from [5]) \Leftrightarrow M is *s*-irreducible.

In conclusion, we have seen that the irreducibles are strictly included in the s-irreducibles which are co-extensive with the π -irreducibles. What this says is that although a machine M which is s-irreducible but not irreducible has a seriesparallel decomposition into machines M_1 , M_2 such that neither M_1 nor M_2 can simulate M, still it must be that by taking a suitable number of copies of either M_1 or M_2 we can simulate M, i.e., $M|_{\pi}M_1$ of $M|_{\pi}M_2$. Finally we note that Theorem 3 enables us to relate the s-irreducible machines given by the Krohn-Rhodes theory (the simple group and unit actions) entirely to machine decomposition operations without reference to semigroup concepts.

Added in proof: A related paper was presented at the Eleventh Annual Symposium on Switching and Automata Theory, Santa Monica, California.

REFERENCES

- [1] K. B. KROHN and J. L. RHODES, "Algebraic Theory of Machines", Mathematical Theory of Automata, p. 371, Polytechnic Press, 1963.
- [2] R. E. KALMAN, P. L. FALB and M. A. ARBIB, Topics in Mathematical Systems Theory, Chapters 7–8, McGraw-Hill, 1969.
- [3] M. A. ARBIB, Algebraic Theory of Machines, Languages and Semi-Groups, pp. 41–46, Academic Press, 1968.
- [4] B. P. ZEIGLER, "On the Feedback Complexity of Automata," University of Michigan Technical Report No. 08226-6-T, Ph.D. Dissertation, Computer and Communication Sciences Department, Ann Arbor, Michigan, 1968.

(Received 20 August 1969)

³Actually, these are proved for full machines but can easily be shown to be true for semiautomata.