A Note on Series Parallel Irreducibility

by
Bernard P. Zeigler*
Department of Computer and Communication Sciences
The University of Michigan
Ann Arbor, Michigan 48104

ABSTRACT
A new criterion for series-parallel irreducibility is given which makes no reference to underlying semigroups but involves only series-parallel connection operations.

A semi-automaton or transition system is a triple $\langle X, Q, M\rangle$ where X, Q are finite sets (of input symbols and internal states respectively), and $M: Q \times X \rightarrow Q$ is the transition function. (In the usual abuse of notation we write M for $\langle X, Q$, $M\rangle$.) In this note we shall characterize the semi-automata which are irreducible with respect to series-parallel decomposition. This augments the definition of Krohn and Rhodes [1] (see also Arbib's formulation in [2]), which in an essential way required the specification of output maps and thus held only for full automata, i.e., machines of the form $\langle S, Q, O, M, N\rangle$, where O is the outut set and N : $Q \rightarrow O$, the output function. Moreover, their definition of irreducibility for machines made direct reference to semigroups while the definition we shall give makes reference only to series-parallel connection operations. Except for changes in notation the presentation follows that of [2] (Chapters 3 and 5).

Let $S(M)$ denote the semigroup of M, i.e.,

$$
S(M)=\left\{\tilde{M}(, x): Q \rightarrow Q \mid x \in X^{*}\right\}
$$

where \tilde{M} is M extended to X^{*}. Given a semigroup S, let M_{S} denote the semigroup transition system, i.e., $M_{S}: S^{1} \times S \rightarrow S^{1}$ with $M_{S}(1, s)=s$ and $M_{S}\left(s, s^{\prime}\right)=s s^{\prime}$ for all $s, s^{\prime} \in S$. Note that $S\left(M_{S}\right)=S .^{1}$

In the following we consider as usual only connected machines with specified starting state.

Given transition functions $M_{i}: Q_{i} \times X_{i} \rightarrow Q_{i}, i=1,2$, we say that M_{2} divides M_{1} (written $M_{2} \mid M_{1}$) if there exist $Q_{1}^{\prime} \subseteq Q_{1}$ and maps $g: X_{2} \rightarrow X_{1}^{*}$, $h: Q_{1}^{\prime} \rightarrow Q_{2}$ (onto) such that
(1) Q_{1}^{\prime} is closed under $g\left(X_{2}\right)^{*}$ and
(2) for all $q_{1} \in Q_{1}^{\prime}, s \in X_{2}, h\left(\tilde{M}_{1}\left(q_{1}, g(s)\right)=M_{2}\left(h\left(q_{1}\right), s\right)\right.$.

[^0]Given $\langle X, Q, M\rangle$ and a positive integer n define $\Pi^{n} M=\left\langle X, Q^{n}, \Pi^{n} M\right\rangle$ by $\Pi^{n} M\left(q_{1}, \cdots, q_{n}, s\right)=\left(M\left(q_{1}, s\right), \cdots, M\left(q_{n}, s\right)\right)$ for all $\left(q_{1}, \cdots, q_{n}, s\right) \in Q^{n} \times X$. $\Pi^{n} M$ represents n copies of machine M (possibly in different states) which are run in parallel and are fed the same input symbol.

Definition. $M_{2} \pi$-divides $M_{1}\left(\left.M_{2}\right|_{\pi} M_{1}\right)$ if there is a positive integer n such that $M_{2} \mid \Pi^{n} M_{1}$. We remark that division, and π-division are transitive relations.
M_{2} mutually π-divides $M_{1}\left(M_{2} \equiv_{\pi} M_{1}\right)$ if $\left.M_{2}\right|_{\pi} M_{1}$ and $\left.M_{1}\right|_{\pi} M_{2}$. We require the following statements.
(1) $M_{2} \mid M_{1}$ implies $S\left(M_{2}\right) \mid S\left(M_{1}\right)$. ${ }^{2}$
(2) $S\left(M_{2}\right) \mid S\left(M_{1}\right)$ implies $M_{2} \mid M_{S\left(M_{1}\right)}$.
(3) $\left.M_{S(M)}\right|_{\pi} M$.
(4) $S\left(\Pi^{n} M\right)=S(M)$.

Proofs may be found in Chapter 1 of [4]. Suffice it to say that (1) and (2) are well-known; (3) is a slight extension of Fact 2.14b, Chapter 5 of [3]. For (4) we note that

$$
\widetilde{\Pi}^{n} M\left(q_{1}, \cdots, q_{n}, x\right)=\left(\tilde{M}\left(q_{1}, x\right), \cdots, \tilde{M}\left(q_{n}, x\right)\right),
$$

and examining the Myhill equivalences relations, we have

$$
\left.\begin{array}{l}
x \equiv_{\Pi^{n} M} y \Leftrightarrow \text { for all }\left(q_{1}, q_{2}, \cdots, q_{n}\right) \in Q^{n}, \widetilde{\Pi}^{n} M\left(q_{1}, \cdots, q_{n}, x\right)= \\
\qquad \widetilde{\Pi}^{n} M\left(q_{1}, \cdots, q_{n}, y\right) \\
\end{array} \quad \text { for all } q \in Q, \tilde{M}(q, x)=\tilde{M}(q, y)\right) .
$$

Hence $S\left(\Pi^{n} M\right)=X^{*}\left|\equiv_{\Pi^{n} M}=X^{*}\right| \equiv_{M}=S(M)$.
PROPOSITION 1. $S\left(M_{2}\right) \mid S\left(M_{1}\right)$ if and only if $\left.M_{2}\right|_{\pi} M_{1}$.
Proof. Assume that $S\left(M_{2}\right) \mid S\left(M_{1}\right)$. Then from (2), $M_{2} \mid M_{S\left(M_{1}\right)}$. Also from (3) $\left.M_{S\left(M_{1}\right)}\right|_{\pi} M_{1}$ so by transitivity $\left.M_{2}\right|_{\pi} M_{1}$.

Conversely, assume that $\left.M_{2}\right|_{\pi} M_{1}$. Then for some $n, M_{2} \mid \Pi^{n} M_{1}$ so by (1) $S\left(M_{2}\right) \mid S\left(\Pi^{n} M_{1}\right)$. Recognizing that $S\left(\Pi^{n} M_{1}\right)=S\left(M_{1}\right)$ from (4) completes the proof.

We see that Proposition 1 allows re-interpretation of semigroup division in terms of π-division. This is not true for ordinary division; to make the converse of (1) hold, output maps have to be added to the semigroups as in Theorem 7.3.10 of [2]. The best that we can get from (1) and (2) is
(5) $S\left(M_{2}\right) \mid S\left(M_{1}\right)$ if and only if $M_{2} \mid M_{S\left(M_{1}\right)}$.

An interesting consequence of Proposition 1 is
COROLLARY 2. $M_{1} \equiv_{\pi} M_{2}$ if and only if $S\left(M_{1}\right) \cong S\left(M_{2}\right)$.
Proof. Apply Proposition 1 twice.
The standard definitions of irreducibility are:
(a) A semigroup S is irreducible if whenever $S \mid S_{2} \times{ }_{Z} S_{1}$ then $S \mid S_{2}$ or $S \mid S_{1}$. (Here $S_{2} \times{ }_{Z} S_{1}$ is a semidirect product of S_{1} by S_{2} with connecting map Z.)

[^1](b) A machine M^{*} irreducible if whenever $M \mid M_{2} \times{ }_{Z} M_{1}$ then $M \mid M_{2}$ or $M \mid M_{1}$. (Here $M_{2} \times A_{2}, I_{1}$ is the series-parallel cascade of M_{1} followed by M_{2} with connecting map Z.)
(c) A machine M is s-irreducible if whenever $M \mid M_{2} \times_{Z} M_{1}$ then $M \mid M_{S\left(M_{2}\right)}$ or $M \mid M_{S\left(M_{1}\right)}$.

We add the definition:
(d) A machine M is π-irreducible if whenever $M \mid M_{2} \times{ }_{Z} M_{1}$ then $\left.M\right|_{\pi} M_{2}$ or $\left.M\right|_{\pi} M_{1}$.

Theorems 8.3.6 and 8.3 .7 ([2], p. 4) state that M is s-irreducible if and only if $S(M)$ is irreducible. On the other hand, while M is irreducible implies $S(M)$ is irreducible, the converse does not hold. ${ }^{3}$ Using on Proposition 1 we can now show that the equivalence does hold for π-irreducibility.

THEOREM 3. M is π-irreducible if and only if M is s-irreducible.
Proof. M is π-irreducible \Leftrightarrow if $M \mid M_{2} \times_{Z} M_{1}$ then $\left.M\right|_{\pi} M_{2}$ or $\left.M\right|_{\pi} M_{1} \Leftrightarrow$ if $M \mid M_{2} \times_{Z} M_{1}$ then $S(M) \mid S\left(M_{2}\right)$ or $S(M) \mid S\left(M_{1}\right)$ (from Proposition 1) \Leftrightarrow if $M \mid M_{2} \times_{Z} M_{1}$ then $M \mid M_{S\left(M_{2}\right)}$ or $M \mid M_{S\left(M_{1}\right)}($ from [5]) $\Leftrightarrow M$ is s-irreducible.

In conclusion, we have seen that the irreducibles are strictly included in the s-irreducibles which are co-extensive with the π-irreducibles. What this says is that although a machine M which is s-irreducible but not irreducible has a seriesparallel decomposition into machines M_{1}, M_{2} such that neither M_{1} nor M_{2} can simulate M, still it must be that by taking a suitable number of copies of either M_{1} or M_{2} we can simulate M, i.e., $\left.M\right|_{\pi} M_{1}$ of $\left.M\right|_{\pi} M_{2}$. Finally we note that Theorem 3 enables us to relate the s-irreducible machines given by the Krohn-Rhodes theory (the simple group and unit actions) entirely to machine decomposition operations without reference to semigroup concepts.

Added in proof: A related paper was presented at the Eleventh Annual Symposium on Switching and Automata Theory, Santa Monica, California.

REFERENCES

[1] K. B. Krohn and J. L. Rhodes, "Algebraic Theory of Machines", Mathematical Theory of Automata, p. 371, Polytechnic Press, 1963.
[2] R. E. Kalman, P. L. Falb and M. A. Arbib, Topics in Mathematical Systems Theory, Chapters 7-8, McGraw-Hill, 1969.
[3] M. A. Arbib, Algebraic Theory of Machines, Languages and Semi-Groups, pp. 41-46, Academic Press, 1968.
[4] B. P. Zeigler, "On the Feedback Complexity of Automata," University of Michigan Technical Report No. 08226-6-T, Ph.D. Dissertation, Computer and Communication Sciences Department, Ann Arbor, Michigan, 1968.
(Received 20 August 1969)

[^2]
[^0]: * Research was sponsored by National Institutes of Health, Grant No. GM-12236-03; Office of Naval Research, Contract No. N00014-67-A-0181-011; and U.S. Army Research Office (Durham), Grant No. DA-31-124-ARO-D-483.
 ${ }^{1} S^{1}$ is the smallest monoid containing S.

[^1]: ${ }^{2}$ For semigroups $S_{i}, i=1,2, S_{1} \mid S_{2}$ if S_{1} is a homorphic image of sub-semigroup of S_{2}.

[^2]: ${ }^{3}$ Actually, these are proved for full machines but can easily be shown to be true for semiautomata.

