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ABSTRACT 

A new criterion for series-parallel irreducibility is given which makes no reference 

to underlying semigroups but involves only series-parallel connection operations. 

A semi-automaton or transition system is a triple (X, Q, M)  where X, Q are 

finite sets (of input symbols and internal states respectively), and M: Q × X ~ Q 

is the transition function. (In the usual abuse of notation we write M for (X, Q, 

M).) In this note we shall characterize the semi-automata which are irreducible 

with respect to series-parallel decomposition. This augments the definition of 

Krohn and Rhodes [1] (see also Arbib's formulation in [2]), which in an essential 

way required the specification of output maps and thus held only for full automata, 

i.e., machines of the form (S, Q, O, M, N),  where O is the outut set and N: 

Q ~ O, the output function. Moreover, their definition of irreducibility for 

machines made direct reference to semigroups while the definition we Shall give 

makes reference only to series-parallel connection operations. Except for changes 

in notation the presentation follows that of [2] (Chapters 3 and 5). 

Let S ( M )  denote the semigroup of M, i.e., 

S ( M )  = {~(  ,x): O -+ Qlx~ 1(*}, 

where ~ is M extended to X*. Given a semigroup S, let Ms denote the semigroup 

transition system, i.e., Ms: $1× S--+ S ~ with Ms(l ,  s) = s and Ms(s, s') = ss' 

for all s, s' E S. Note that S(Ms)  = S. ~ 

In the following we consider as usual only connected machines with specified 

starting state. 

Given transition functions Mi: Q i × X i - + Q i ,  i = I, 2, we say that M 2 

divides M x (written M21M1) if there exist Q~ _c Q1 and maps g: X 2 -+X*, 

h: Q~ -+ Q2 (onto) such that 

(1) Q~ is closed under g(X2)* and 

(2) for all ql ~ Q~, s E 1(2, h(l~ll(ql , g(s)) = M2(h(qO, s). 

* Research was sponsored by National Institutes of Health, Grant No. GM-12236-03; 
Office of Naval Research, Contract No. N00014-67-A-0181-011; and U.S. Army Research 
Office (Durham), Grant No. DA-31-124-ARO-D-483. 

aSX is the smallest monoid containing S. 
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Given (X, Q, M> and a positive integer n define I-I"M = (X, Q", I P M )  

by II"M(qx," ", q,, s) = (M(qx, s) , . . . ,  M(qn, s)) for all (ql, '" ", q,, s) e Q" x X. 

II"M represents n copies of machine M (possibly in different states) which are 

run in parallel and are fed the same input symbol. 

Definition. M2 zr-divides M1 (M2I~M1)if there is a positive integer n such 

that M21IPM. We remark that division, and 7r-division are transitive relations. 

M 2 mutually ~r-dibides M 1 (M 2 =~ M1) if M21~M 1 and Ma[~M 2. We require 

the following statements. 

(1) M2IM~ implies S(M2)]S(MO? 

(2) S(M2)[S(MO implies M2[Ms(MI ). 

(3) MSCM)[~M. 
(4) S(II"M) = S(M). 

Proofs may be found in Chapter 1 of [4]. Suffice it to say that (1) and (2) are 

well-known; (3) is a slight extension of Fact 2.14b, Chapter 5 of [3]. For (4) we 

note that 

II~M (ql, . . ., q,, x) = (ff4 (q~, x),. . ., M(q,, x)), 

and examining the Myhill equivalences relations, we have 

x = n,M Y ~ for all (ql, q2,'" ", q,) e Q", II"M(qD. •., q,, x) = 

H"m(q~,. . ., q,, y) 

for all q e Q, ~ ( q ,  x) = ~ ( q ,  y) 

~ , x  --MY. 

Hence S(II"M) = X*] - n , M  = X*[ - u  = S(M). 

PROPOSITION 1. S(M2)IS(M1) i f  and only if  M2[~M1. 

Proof. Assume that S(M2)[S(MI). Then from (2), M 2 [Ms(M, ). Also from (3) 

Ms(ul)I~M1 so by transitivity M2[~MI. 
Conversely, assume that M2[~MI. Then for some n, M2[II"M1 so by (1) 

S(M2)[S(II"MO. Recognizing that S(I I"M0 = S(M~) from. (4) completes the 

proof. 

We see that Proposition 1 allows re-interpretation of semigroup division in 

terms of ~r-division. This is not true for ordinary division; to make the converse 

of( l )  hold, output maps have to be added to the semigroups as in Theorem 7.3.10 

of [2]. The best that we can get from (I) and (2) is 

(5) S(Mz)[S(M1) if and only if M2IMs(M1 ). 

An interesting consequence of Proposition 1 is 

COROLLARY 2. M 1 =~ M2 if  and only if  S(M1) ~ S(M2). 
Proof. Apply Proposition 1 twice. 

The standard definitions of irreducibility are: 

(a) A semigroup S is irreducible if whenever $1S2 Xz $1 then S[$2 or S]S1. 
(Here $2 x z S~ is a semidirect product of S~ by $2 with connecting map Z.) 

2For semigroups S,., i = 1, 2, $11S2 if $1 is a homorphic image of sub-semigroup of $2. 
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(b) A machine M' irreducible if whenever MIM2 x z M t then M [ M  2 or 

MIM 1. (Here M 2 x ,. ).I 1 is the series-parallel cascade of M1 followed by M 2 

with connecting map Z.) 

(c) A machine M is s-irreducible if whenever M[M z x z M1 then MIMs(M2 ) 

or MIMs(MI). 

We add the definition: 

(d) A machine M is rr-irreducible if whenever M[M2 x z M1 then M[,M2 

or MIaMi. 

Theorems 8.3.6 and 8.3.7 ([2], p. 4) state that M is s-irreducible if and only if 

S(M) is irreducible. On the other hand, while M is irreducible implies S(M) is 

irreducible, the converse does not hold. 3 Using on Proposition 1 we can now 

show that the equivalence does hold for rr-irreducibility. 

THEOREM 3. M is rr-irreducible i f  and only if M is s-irreducible. 

Proof. M is 7r-irreducible -~- if M [ M  2 × z  M1 then M[nM 2 or MI,M 1 <:~ if 

M[M2 X z Mt then S(M)[S(M2)or S(M)IS(M 0 (from Proposition 1 ) ~ i f  

M[M2 x z M~ then M]Ms(M2) or MIMs(MI ) (from [5]) ~ M is s-irreducible. 
In conclusion, we have seen that the irreducibles are strictly included in the  

s-irreducibles which are co-extensive with the 7r-irreducibles. What this says is 

that although a machine M which is s-irreducible but not irreducible has a series- 

parallel decomposition into machines M1, M2 such that neither M 1 nor M2 

can simulate M, still it must be that by taking a suitable number of copies of 

either Mx or M2 we can simulate M, i.e., M[~Ma of M[,M 2. Finally we note 

that Theorem 3 enables us to relate the s-irreducible machines given by the 

Krohn-Rhodes theory (the simple group and unit actions) entirely to machine 

decomposition operations without reference to semigroup concepts. 

Added in proof." A related paper was presented at the Eleventh Annual 

Symposium on Switching and Automata Theory, Santa Monica, California. 

REFERENCES 

[1] K. B. KROHN and J. L. RHODES, "Algebraic Theory of Machines", Mathematical Theory 
of Automata, p. 371, Polytechnic Press, 1963. 

12l R. E. KALMAN, P. L. FALB and M. A. ARBIB, Topics in Mathematical Systems Theory, 
Chapters 7-8, McGraw-Hill, 1969. 

[3] M. A. ARBIB, Algebraic Theory of Machines, Languages and Semi-Groups, pp. 41-46, 
Academic Press, 1968. 

[4] B. P. ZEIGLER, "On the Feedback Complexity of Automata," University of Michigan 

Technical Report No. 08226-6-T, Ph.D. Dissertation, Computer and Communication 
Sciences Department, Ann Arbor, Michigan, 1968. 

(Received 20 August 1969) 

3Actually, these are proved for full machines but can easily be shown to be true for semi- 

automata. 


