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Abstract. The propagation of weakly nonlinear, weakly dispersive sound waves in

a magnetic cylinder satisfies an equation originally discussed in a limiting form by

Leibovich (1970) and in general form by Roberts (1985). We show here that the

resulting Leibovich-Roberts equation possesses nonlinear solitary wave behaviors

akin to Benjamin-Ono waves in a slab. We also show how the structure of the

solitary waves can be determined using a variational principle.

I. Introduction. When a layered inhomogeneity occurs in a system, the possibility

always arises that the inhomogeneity acts to duct information, thereby causing a

solitary wave to propagate. Such phenomena have received considerable attention

in recent years, particularly in the scientific arena of fluid flow. A particularly lucid

summary is provided by Roberts (1985) of work to date on such solitary waves. To

a large extent the available knowledge on solitary wave behaviors and on solitons

has been carried out for planar geometries (waves in a slab)—perhaps because of the

lack of the usual appearance of some scaling factor related to the divergence of wave

fronts as always seems to occur in other than planar geometries. Yet it is becoming

increasingly necessary in many disciplines that a greater degree of attention be paid

to solitary wave behavior in nonplanar geometries; for instance, the theoretical work

of Leibovich (1970) and the experimental work of Pritchard (1970) on waves in a

cylindrical vortex core. More recently, Roberts (1985) has persuasively argued that,

in the solar physics case, cylindrical magnetic flux tubes are capable of supporting

solitary wave behavior, and that such behavior is, perhaps, one origin for spicules seen

in the solar chromosphere. For a disturbance, v(z, t), propagating in the direction,

z, at time, t, along the symmetry axis of a cylindrical geometry, Leibovich obtained

a propagation equation of the form,

dv dv dv d3 ( f°° v(s,t)ds\ . .
+ c— + y5v— + a^r-r [P / ~T——r = °> (*)

dt dz
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where c, /?, and a are constants, and P denotes principal value. In the case of a

magnetic flux tube, Roberts (1985) obtained an equation of similar appearance,

dv dv dv d3 f°° v(s,t)ds n
~a7^~c7)—a7T~3 / n2 i xITTp — ' (2)
df <9z dz dz3 J_00 [A2 + (z - s)2]1'2

where c, /?, a, and X2 are positive constants, A. Here A provides a direct measure of

the ratio of the sound speed to the Alfven speed (see Roberts, 1985).

It is clear that, in some sense, Eq. (2) is a generalization of Eq. (1) since, if the

limit exists, solutions of (1) can be obtained from solutions to (2) by setting A —> 0.

Leibovich (1970) and Leibovich and Randall (1972) examined the solitary wave

behavior of Eq. (1) numerically using asymptotic expansion techniques. They found

that a solitary wave is present, which is qualitatively similar in character to solutions

of the Benjamin-Ono equation. This behavior might have been anticipated since the

Benjamin-Ono equation describes solitary wave behavior in a slab.

What is not so clear is the question of modifications to the solitary wave behavior

when the presence of a finite A is allowed for—as in Roberts' case. The question we

address here is directed toward uncovering properties of the solitary wave behavior

for Eq. (2)—which we have taken the liberty of calling the Leibovich-Roberts (LR)

equation. Section II of the paper reduces the LR equation to a simpler form based

upon the supposition that a solitary wave behavior exists, and it also examines some

of the global and local properties of the reduced equation. Section III introduces a

nonlinear variational principle related to the reduced equation, and develops the ad-

joint field equation, as well as the globally conserved quantities from an application

of Noether's theorem. A simple illustration of the use of the nonlinear variational

principle to construct solutions to the LR equation concludes the section. A discus-

sion and our conclusions are given in Section IV.

II. The solitary wave Leibovich-Roberts equation.

a. General Reduction. On the assumption that a solitary wave exists to Eq. (2),

write £ = z - Vt with

V{z,t) = ct>{z-Vt) = m- (3)

Then we can write Eq. (2) in the form

t,d</> d<t> 0J<\> a3 [°° 4>(C)dC
dt +cd{ +p(pd£ +aaf3/_00[A2 + (f-OT/2 -° (4)

with C = s - Vt.

Equation (4) has an immediate first integral,

where A is a constant of integration.

Set wt = (c - F)(2/?)_1/2, y = A - (c — F)2/(2/?), and w = (f}/2)x,1(t> + vv* when w

satisfies the equation

2 / 2 \1/2 d2 f°° w(C)^C

w+1/ a{fi) eeLw + ic-wv*-
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By integrating Eq. (6) over the domain -oo < £ < oo we see that y must be negative

for a solution to exist, i.e., A < (c - V)21(2/?).

When this is true set y = -T2 and w = T(1 + /) to obtain from Eq. (6) the

equation for / in the form

1/2 a2 r m dt:
[A2 + (C-£)2]'/2- 1 J

(Rn\H2n _  
n2

rl -i r af2\ d2 f
f + / = _f \j) wJ-

Now rescale the independent variable by setting £ = Xx, £ = Ay, (/?/2)l/2a = A

when

with

<•2 i 2f — d2 r f(y)dy (s]
f+f dx2J_00[l + (y-x)2V/2 (8)

/oo r oo

f2 dx = -2 f dx. (9)
-oo J — OO

It is apparent by inspection of Eq. (8) that f(x) is symmetric: /(-x) = /(x), so that

we can also write the constraint equation (9) in the form

r OO r OO

/ /(x)2 dx = -2 /(x) rfx.
yo

(10)

b. Asymptotic Properties. For |x| —► oo, we see from Eq. (8) that / cc |x|~3 so

that the integrals in (10) are indeed bounded. For |x| —► 0 we can use the symmetry

property, f(x) = /(-x), to write

/(x) = /o + /ix2 + /2X4 + • • • . (11)

A zeroth-order attempt at obtaining a structural form for /(x) might then proceed

as follows:

Let

/(x) =/o + /iX2 in |x| < x, (12a)

and let

f(x) = (/o + /iX2)(x,/x)3 in |x| > x* (12b)

so that /(x) is continuous on x = x*. Use the integral constraint (10) to obtain the

connection

\{fxxl)2 + /,x2 0 + ||r0) +3/0(1 + |/0) =0. (13)

To obtain two remaining connections between f0, fu and x, we then use the approx-

imate forms (12) in Eq. (8) and evaluate the result for both large and small x. Thus

at small x we obtain

f° +2/o = -2c,r %~+$ndy asx~0 (l4a)

while, as x —> 00, Eq. (8) yields

roo

(Jo + f\xl)xl = -4a / f{y) dy, as x ^ 00. (14b)
J 0
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Using the approximate forms (12) to evaluate the right-hand sides of Eqs. (14) we

obtain from Eq. (14a) that

/02 + 2/0 = -2a j(/0 - /i)(s*3 - st) - 3/,s. + f In

rOO

+(/o + f\xl)xl /
J x+

(2y2 - 1 )dy

yi{ 1 + y2)5/2

while Eq. (14b) yields

/- /• 2 ~ 4a
fo + fix; = --t

X.2

M + 2
2 6

(15a)

;i5b)

with 5* = sin 6* and x* = tan d*.

Equations (13), (15a), and (15b) provide three constraints connecting the unknown

parameters /0, f, and x». Hence it is possible to unravel approximate values for these

parameters for a given value of a. An alternative is to specify the match point x*

and to then ask for the values of fo, f\, and a consistent with the chosen x*.

Improvements can be made by increasing the number of terms in the two series

presentations of /(x) at small and large x, satisfying the global constraint condition

(10), and then evaluating the integral equation (8) as x —> 0 and x —» oo term by term,

thereby producing a series of parameter equations which give increasingly accurate

values for the parameters as the number of terms increases.

This classical approach to the nonlinear equation (8) is arranged to satisfy the

equation exactly to a better and better degree in the number of derivatives of /(x)

at all x, eventually producing a well-fitting solution to the equation.

By way of contrast, variational principles to obtaining solutions of equations aban-

don the idea of fitting the original equation perfectly in favor of obtaining a global

behavior to the solution which approximates to the true solution, sometimes over-

shooting, sometimes undershooting the true equation behavior. As more terms are

added to the trial functions in the variational, the global behavior more and more

closely satisfies the original equation. We shall return to this point in the next sec-

tion of the paper where functions adjoint to the original nonlinear equation (8) play

a role. It is appropriate first to consider bifurcation points of Eq. (8) since there is

a close connection between bifurcated solutions to Eq. (8) and the adjoint functions

of the next section.

c. Bifurcation properties. Suppose that, as the single real positive parameter a is

increased in Eq. (8), a solution is / = fo(x) for a < a0 and that in a > a0, the

solution bifurcates so that in a = a0 + £ (with e > 0) we have a second solution

fi = fo(x) + efiix'£) which must reduce to fi — f0 as e —► 0. Then by following

the technique given by Tricomi (1957), it is not difficult to show that as e —> 0 the

requirement that a = ao be a bifurcation value is reduced to the requirement that a

nontrivial solution exist to the homogeneous integral equation

f(r]_ ~ao d2 r f(y)dy nfil
-7'1 J 2(i+/0(x))ax2y_oo[i + (y-x)2]'/2 ^

where f\{x) is the limit form of f(x,e) as e —> 0.
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One particular solution of Eq. (8) satisfying the constraint equation (10) is fo{x) =

0. Hence, bifurcation points exist whenever a nontrivial solution exists to

a0 d2 f°° f\(y)dyf(x\=-±9.1L r
• l( ) 2 dx2J_,2 dxtJ^V + iy-xWW (17)

Now Eq. (17) is of the convolutional type. Taking the Fourier transform of both

sides (with real transform variable k conjugate to x), we obtain

fi(k) [l - —k2Ko(k)] = 0 (18)
n

where K0{k) is the standard modified Bessel function. Hence for f(k) ± 0 bifurca-

tion points exist whenever we can satisfy

k2K0(k) = n/a0. (19)

Now the left-hand side of Eq. (19), which is positive, has a single peak value of

around unity so that if a0 < 0(n~l) we cannot satisfy Eq. (19) and no bifurcation

of the /o = 0 solution occurs. As a0 is increased, eventually two, and only two, real

values of k, k\, and k2 say, satisfy Eq. (19) so that the bifurcation consists of the

addition of two sine wave solutions in the neighborhood of any bifurcation point.

For other solutions, fo(x), different bifurcation properties and points exist due to

the denominator 1 + fo{x) in Eq. (16).

III. A variational principle approach.

a. General considerations. As we have remarked already, the essence of a vari-

ational approach is to seek for approximate satisfaction of the original equation in

a global, rather than a local, sense (Morse and Feshbach, 1953). The problem of

constructing extremal variationals to nonlinear equations has been well addressed by

Becker (1964) and we follow his general method of approach here.

Consider the Lagrangian functional,

/OO

J?(f f+, x) dx,
-OO

where

srur. *>=r w + if) - °a-£ §-x £ n (21)

If L is extremized with respect to arbitrary variations in f+ we recover Eq. (8). If

L is extremized with respect to variations in /, we determine the equation to be

satisfied by the adjoint function, /+, as

f+ = a g2 r° f+{y)dy
} 2(1 + /) dx2 J_00 [1 + (y — x)2]1/2 1 j

We see immediately that the adjoint function, /+, satisfies the identical linear equa-

tion as that satisfied by the bifurcation solution (Eq. (16)), the difference being that

the adjoint function satisfies Eq. (22) for all values of the parameter, a, while the

bifurcation solution satisfies the same equation only in the limit as the parameter a

tends to the bifurcation value aq.

(20)
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To provide the equivalent of a Wronskian requirement on the function / and its

adjoint f+, we multiply Eq. (8) by /+(x), Eq. (22) by /(x) and subtract to obtain

,r f+(v)dy _ + dj_ [°° f(y)dy
)dx^J_00[\ + (y-xYY^ J {X}dxi]^[\ + (y-x)2]i/2

(23)
Upon integrating Eq. (23) in —oo < x < oo, and assuming, with Becker (1964), the

usual convergence of end-point integration values on the right-hand side of (23) we

obtain

f2{x)f+(x) = -a

L
oo

2f ^ f+f2(x)f+{x)dx = 0. (24)

Hence, f+{x) is the adjoint function to f(x), belonging to the same parameter value

a, provided Eq. (24) is satisfied.

We note also that we can write the Lagrangian density in the form

f+ V df* ,+,r2 . df* V-r- /+(/ + 2/) - ~kM(x) - (25)

with

and where M and M+ are regarded as explicit functions of x. We note that we can

then write Eq. (8) in the form

dJz? d ( dS? \' =0 (26)

0. (27)

df+ dx \d{df+/dx)

and Eq. (22) in the form

d£f d / dS? \

~W ~ dx \d{df/dx) J
From the form of the Lagrangian density (25) we also have canonical "momenta"

defined by

n+=mms (28a)

n=mwrns -aM{x) (28b)

so that we can construct a Hamiltonian density

;r = n^ + n
ox dx

= -/+(/2 + 2/) (29)

and a Hamiltonian H through

/OO r OOF(x) dx = - / /+ (/2 + 2/) rfx (30)
-oo J —oo

If the adjoint function constraint (24) is used, then the Hamiltonian reduces to

H
/OO

ff+dx. (31)
-oo
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b. Conserved quantities. The construction of conserved quantities is based on

symmetry arguments. The solitary wave propagation equation (8) and the adjoint

function equation (22) should not depend on how the origin of the "spatial" coordi-

nate, x, is chosen.

So if, in the Lagrangian, the coordinate x is replaced by x + <!; where £, is arbitrary,

but infinitesimal, no difference should ensue in the Lagrangian. But since the regime

of integration is over all values of x, this implies that the Lagrangian density should

remain unchanged under such a shift in the origin of coordinate measurements. Now

if we had obtained a solution to Eqs. (8) and (22) (subject to the constraint condi-

tions (10) and (24)) then the Lagrangian density would be expressible as an explicit

function of x:

= (32)

Then changing the origin of coordinates will change the Lagrangian density:

S?{x + 0 = &{x) + 0(e). (33)

But since / and f+ are also functions of x it follows from (25) that

-rf^(x) xd5?df ,d^df+
dx df dx d/+ dx

, i d fdf\ | , d& d (df*
8 (|r_yx\axj g^yx\ax

K(dSfdM d^f dM+\

+ l*\dM~d^+ dM+ dx J ' (34)

We can now use the field equations (26) and (27) to eliminate ^ and in Eq.

(34). Upon so doing we obtain

sdx

•+

ox dx

xfd5fdM d£? dM+ )
~ \dM dx + dM+ dx )

= +&
df+ dM df dM+

dx dx dx dx (35)

But this must hold true at all values of Thus

Mdf+ d2 [°° f(y)dy df d2 [°° f+{y) dy
dx

. [°° f(y)dy df d2 r
J-co [1 + (y -X)2]1/2 dx dx2dx dx2 J_00 [1 + (y - x)2]'/2 dx dx2 [1 + (y - x)2]1/2.

((/2 + 2/)/+). (36)
d ,, f2

dx

Equation (36) is equivalent to the momentum theorem of classical mechanics. It

represents the rate at which the Hamiltonian density changes with spatial coordinate

(the left-hand side of equation (36)) as a consequence of an applied "force" (the

right-hand side of equation (36)).

c. Application of the variational method. Apart from its reduction of the LR

solitary wave equation to an aesthetic form involving the adjoint function, and of

its use in determining the structure of local and global conserved quantities by way
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of Noether's theorem, the variational method can also be used to approximate to

solutions to the Leibovich-Roberts equation. For the application here we shall use

the forms (20) and (21) together with the constraint conditions (10) and (24).

The sense of the argument, as detailed in Morse and Feshbach (1953) and Becker

(1964), is to choose trial functions for / and f+ which approximate whatever is

known about the shapes of / and /+ that has been gleaned from the true equations.

These trial functions, chosen to satisfy exactly the constraint conditions, contain one

or more "free" parameters. The trial functions are introduced into the Lagrangian

(20), all integrals performed, leaving then an expression for the Lagrangian L which

is dependent solely on the parameters in the trial functions. The Lagrangian is then

extremized with respect to the parameters, thereby providing equations for a de-

termination of the parameters. By repeated application with more and more trial

functions, a better and better approximation is constructed to the exact solution to

the true equation.

In our case, from Eq. (8) we know that / is of the form f0 + f\x2 + ■ ■• at small

x, and of the form / oc x-3 at large x (apart from the two uninteresting solutions

f= 0 and f = -2).
Suppose then that we search for an approximate solution to Eq. (8) in the form

OO

f(x) = Y,fn-dv(x)i]n (37)
n= 1

with i//(x) = (1 + x2/xl)~^2 where the /„ and xt are to be determined.

To be specific we shall carry through the computations for fn^\ = 0, n > 1 —

although inclusion of the higher-order terms involves only that more integrals be

computed and not any qualitative change in the method of analysis.

Then with the ansatz

f = m+x2lxl)-i'2, (38)
the constraint (10) yields the relation

A-(39)

so that, provided x2 > 0, we have that the approximate form for f(x) is negative

everywhere.

The constraint (24) requires that we choose f+(x) such that

I f+{x)(l+x2/x2)i=°- (40)

For the choice

f+{x) = W{x)]2 + b[v{x)]\ (41)

we obtain that b = -8/7 permits satisfaction of the constraint (40). Use of (38),

(39), (41), and (42) in (20) enables us to write the Lagrangian in the form

L f°° [
~7~ ~ dx\[v{x)]
JO J — oo v

-a4[iy{x)]

1- rjW{x)]2

16 ,
1-yM3

[vW]3(/0[v(x)]3 + 2)

/ d_ [°° [y/(y)]3 dy \

Cdx )_00[\+{y-X)2]\/2}
(42a)
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Scaling x and y in terms of x*, we can write

L

fo
= J du^[(j>{u)]2i - jMu)]2 [</>(w)] x*(/o[<K")] +2)

-4a& (i - } £ ll+^%l/2j (42b)

where = (1 + w2)~'/2. Extremizing the Lagrangian L with respect to variations

in x* yields the equation to be satisfied by x, in the form

fZ du[mi5( 1 - f[0(«)]2)(2 + /o[0(w)]3)

^ " "Ho duimmn 1 - [fgi

i.e.,

4 ax,

rn/2 ■ Q a(, 16 3 o\ja( [n/2 sin <t> cos2 <j>{Uxi 6 - tan (j))2 d(f>\\
sin 0 cos 0 1 - — cos J'9)dd\ —— ..   > .

—ji/2 V 7 ; \J-n/2 [1 + x2(tan 6 - tan</>)2]3/2 j J

(43b)

Now if x* < 1, from Eq. (43b) we obtain

0.3

so that x* « a/80.

The requirement x* < 1 can then be used to argue that a < 80 for satisfaction of

(43b). Clearly for a > 80, we have to consider the opposite extreme of (43b) where,

a priori, we choose x* » 1—but the evaluation of this case is left as an exercise for

the reader.

It is also clear that by increasing the number of terms /„_ i (n > 1) in the approxi-

mate expression (37) for /(x), we improve both the functional fit to the Leibovich-

Roberts equation and we also systematically refine the values of the parameters. The

lowest-order approximation yields

/s-g(l+x2/x2)-3/2 (45)

with x* « 1 /(80a) for a < 80.

IV. Discussion and conclusion. The structure of the generalized Leibovich-Roberts

equation contains an intrinsic scale-factor which is not removable by any simple

transformation. This scale-factor is intimately connected with the cylindrical nature

of the solitary wave problem making the determination of solitary wave behavior

more difficult than for the equivalent Benjamin-Ono equation in a flat slab.

Nevertheless we were able to reduce the Leibovich-Roberts equation to a solitary

wave form, were able to obtain a first integral to it, and were able to categorize

the overall structural behavior of solitary wave patterns. With this categorization to

hand we then showed that a variational principle existed for the Leibovich-Roberts

equation which admitted of adjoint functions, conserved quantities, and which could
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be used in an extremal manner to determine the structural and parametric form of the

solitary wave solutions to the equation. We illustrated this latter point by a simple,

specific, illustration.

The structure of the solitary wave pattern of the Leibovich-Roberts equation is

long-range (oc x~3), as is the solitary wave pattern of the corresponding Benjamin-

Ono equation (oc x~2). The major difference seems to be that while we know how to

construct analytically exactly solitary wave solutions to the Benjamin-Ono equation,

and to consider their interacting soliton characteristics, no such analytical method

is yet known for the Leibovich-Roberts equation (even in the case where the scale-

length is set to zero, recourse to numerical methods still seems to be necessary, as

done by Leibovich (1970) over a decade and a half ago).

What we have shown in this paper is that a nonlinear variational principle, a la

Becker (1964), provides a powerful and elegant method for coming to grips in a

systematic manner with a determination of the solutions to the Leibovich-Roberts

equation. It would seem that the major difficulty to producing a more accurate

approximate structural solution than the one we have presented, is in the explicit

analytic evaluation of the integrals in the Lagrangian. We suspect that numerical

methods should be brought to bear to improve the resolution of the approximate

behavior we have uncovered. And we would also be curious to see if more effort

would uncover a method of providing exact analytic solutions.
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