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Abstract. We provide an introductory review of some topics in spectral the-

ory of Laplacians on metric graphs. We focus on three different aspects: the

trace formula, the self-adjointness problem and connections between Lapla-
cians on metric graphs and discrete graph Laplacians.

1. Introduction

Quantum graphs are Schrödinger operators on metric graphs (i.e. discrete graphs
where edges are identified with intervals of certain lengths), acting on edgewise
smooth functions satisfying certain coupling conditions at the vertices. The most
studied quantum graph is the Kirchhoff Laplacian, which corresponds to a Laplacian
without potential and provides the analog of the Laplace–Beltrami operator on
Riemannian manifolds in this setting.

Originally introduced by Pauling in the 1930s in order to model free electrons
in organic molecules, quantum graphs are connected to several diverse branches of
mathematics and mathematical physics, placing them at the intersection of many
subjects in mathematics and engineering. Their key features include their use as
simplified models of complicated quantum systems, the appearance of metric graphs
in tropical and algebraic geometry (where they can be seen as non-Archimedean
analogs of Riemann surfaces), and applications in physics, mathematical biology
and material sciences (often based on a one-dimensional graph approximation of a
thin wire-like material). In the last decades, they have been studied extensively from
different perspectives, and we only refer to a brief selection of recent monographs
and collected works [10, 11, 20, 23, 25, 30, 42, 53] for an overview and further
references.

In this expository note, we give a brief overview of some aspects in the spectral
theory of the Kirchhoff Laplacian. We discuss three different topics: the trace for-
mula (Section 3), the self-adjointness problem (Section 4) and connections between
quantum graphs and discrete graph Laplacians (Section 5). Necessary definitions
and prerequisites are collected in Section 2.

2. Preliminaries

2.1. Metric graphs. Let Gd = (V, E) be an undirected graph, that is, V is a finite
or countably infinite set of vertices and E is a finite or countably infinite set of
edges. We call two vertices u, v ∈ V neighbors and write u ∼ v if there is an edge
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eu,v ∈ E connecting u and v. We will always assume that Gd is simple (no loops or
multiple edges) and connected1.

For every vertex v ∈ V, we denote by Ev the set of edges incident to v. The
degree of a vertex v ∈ V is given by

deg(v) := #{e| e ∈ Ev}. (2.1)

The following assumption is imposed throughout the paper.

Hypothesis 2.1. Gd is locally finite, that is, deg(v) <∞ for every v ∈ V.

Assigning each edge e ∈ E a finite length `(e) ∈ (0,∞) and considering the
corresponding edge length function ` : E → (0,∞), we can naturally associate with
(Gd, `) = (V, E , `) a metric space G: we identify each edge e ∈ E with an interval
Ie = [0, `(e)] and then obtain a topological space G by ”glueing together” the
intervals according to the incidence relations in Gd. The topology on G is metrizable
by the natural path metric %0 – the distance between two points x, y ∈ G is defined
as the arc length of the “shortest continuous path” connecting them (for infinite
graphs, such a path does not necessarily exist and one needs to take the infimum
over all such paths).

A metric graph is a metric space G arising from the above construction for
some collection (Gd, `) = (V, E , `). Conversely, a collection (Gd, `) whose metric
realization coincides with G is called a model of G. Clearly, any metric graph has
infinitely many models (e.g., obtained by subdividing edges using vertices of degree
two). However, for the rest of this article, we will always consider a metric graph
G together with a fixed model. Abusing slightly the notation, we will usually not
distinguish between the two objects and also write G = (V, E , `) or G = (Gd, `).

A metric graph G = (V, E , `) is called finite, if Gd = (V, E) has finitely many
edges and vertices, and infinite otherwise. Note that G = (V, E , `) is finite exactly
when G is compact as a topological space, and hence we can equivalently speak
about compact and non-compact metric graphs.

2.2. The Kirchhoff Laplacian. Let G = (V, E , `) be a metric graph. The metric
space G carries a natural Lebesgue measure, obtained from the Lebesgue measures
of its interval edges. The associated L2-space L2(G) consists of all (equivalence
classes of almost everywhere defined) functions f : G → C such that

‖f‖2L2(G) :=

∫
G
|f(x)|2 dx <∞. (2.2)

Equipped with the norm (2.2), the L2-space L2(G) is naturally a Hilbert space.
For every edge e ∈ E , let H2(e) = H2([0, `(e)]) be the standard second order
Sobolev space on the interval edge e ∼= [0, `(e)]. By definition, H2(e) consists of all
continuously differentiable functions fe : [0, `(e)] → C whose distributional second
derivative is given by an L2-function f ′′e in L2(e) = L2([0, `(e)]).

Consider a function f : G → C whose restriction fe := f |e is twice continuously
differentiable on each edge e ∈ E . Taking the edgewise second derivative

∆f := (f ′′e )e∈E , (2.3)

we obtain a function defined almost everywhere on the metric graph G (namely
except in the vertices). This definition still makes sense if the restrictions fe belong

1These assumptions could be removed with a little extra effort, however, we impose them in

order to streamline the exposition.
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to the Sobolev space H2(e) for all e ∈ E , and the second derivatives in (2.3) are
taken in the distributional sense.

The domain of the Kirchhoff Laplacian is given by

dom(H) := {f ∈ L2(G)| f is continuous, fe ∈ H2(e) for all e ∈ E ,

f satisfies (2.4) for all v ∈ V and ∆f ∈ L2(G)},

where the so-called Kirchhoff conditions at a vertex v ∈ V are given byf is continuous at v,∑
e∈Ev

f ′e(v) = 0,
(2.4)

and f ′e(v) denotes the derivative of f in v taken along the incident interval edge
e ∈ Ev. Finally we define the Kirchhoff Laplacian H by

Hf := −∆f, f ∈ dom(H).

Altogether, H : dom(H) ⊆ L2(G) → L2(G) is an unbounded, densely defined and
closed operator in the Hilbert space L2(G).

Note that, formally, we have introduced the Kirchhoff Laplacian H by using a
fixed model (V, E , `) of the metric graph G. However, one easily verifies that the
definition of H is independent of the concrete choice of the model.

2.3. Properties of the Kirchhoff Laplacian. In what follows, we are interested
in the spectral properties of the operator H. One of the most basic questions, which
underlies all subsequent spectral analysis, is the following: Is H self-adjoint? That
is, does H = H∗ hold for the adjoint operator H∗ of H? In the affirmative case,
H is a non-negative, self-adjoint operator in L2(G) and we need to understand the
properties of its spectrum σ(H) ⊆ [0,∞). Here and below, we denote by

%(A) = {λ ∈ C|(A− λ Id) has a bounded inverse defined everywhere on H}

the resolvent set of a self-adjoint linear operator A : dom(A) ⊆ H → H in a Hilbert
space H. Moreover, σ(A) := C\%(A) is the spectrum of A, and we have σ(A) ⊆ R.

Analogous to compact Riemannian manifolds, it is well-known that the Kirchhoff
Laplacian H on a finite (equivalently, compact) metric graph is self-adjoint and its
spectrum σ(H) is purely discrete (see e.g. [11, Theorem 3.1.1]). The spectrum
consists of an infinite sequence 0 = λ0 < λ1 ≤ λ2 ≤ . . . of eigenvalues of finite
multiplicity tending to +∞ (by convention, eigenvalues are counted with their
multiplicity in the sequence). The lowest eigenvalue is given by λ0 = 0 and its
eigenspace consists of the constant functions on G. The latter holds since G is
connected by assumption. Moreover, the eigenvalues satisfy Weyl’s law

#
{
k ∈ N|

√
λk ≤ λ

}
=

vol(G)

π
λ+O(1), λ→ +∞, (2.5)

where vol(G) =
∑
e∈E `(e) is the total volume of G.

The properties of the Kirchhoff Laplacian H on infinite metric graphs are more
rich and less studied. This situation should be compared to the case of non-compact
Riemannian manifolds. We stress that, in particular, self-adjointness may fail (see
also Section 4) and clearly other types of spectra can occur.
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3. The trace formula for finite metric graphs

In this section we review the trace formula for finite metric graphs. The trace
formula was discovered independently by Roth [57] and Kottos–Smilansky [43, 44]
(see also [11, 45]). It connects the spectral data of the Kirchhoff Laplacian to
geometric data stemming from the closed paths in the graph.

In order to state the result, we introduce the following notions. Let G = (V, E , `)
be a finite metric graph. By Euler’s formula, the first Betti number g of G (which
coincides with the cyclomatic number of Gd = (V, E), that is, the dimension of the
cycle space of Gd) is given by

g = #E −#V + 1.

(Recall that, by assumption, G is connected.) A closed (combinatorial) path in
Gd = (V, E) is a finite sequence (vi)

N
i=0 of vertices such that each vi is connected to

vi+1 by an edge evi,vi+1
and, moreover, v0 = vN . Note that backtracking is allowed,

meaning we may use an edge twice in a row, transversing it in opposite directions.
A periodic orbit p is a closed path up to forgetting which vertex is the starting
point, that is, an equivalence class of closed paths obtained by cyclically permuting
the vi’s. The set of periodic orbits on Gd is denoted by P.

A periodic orbit p ∈ P is called primitive, if it can not be obtained by repeatedly
transversing a shorter periodic orbit. Each periodic orbit p ∈ P is a repetition of
a unique periodic orbit with minimal length, which is then primitive. The latter is
called the primitive part of p and denoted by prim(p).

To each periodic orbit p ∈ P (represented by a closed path (vi)
N
i=0), we associate

the following quantities:

• its (arc) length `(p) in the metric graph G, given by `(p) =
∑N
i=1 `(evi−1,vi).

• its scattering coefficient s(p), given by the product of vertex scattering
coefficients along the path,

s(p) =

N∏
i=1

Svi(evi−1,vi , evi,vi+1)

(by convention, vN+1 := v1). Here, for two edges e, e′ incident to a vertex
v ∈ V, the vertex scattering coefficient is defined by

Sv(e, e
′) =

2

deg(v)
− δe,e′ ,

where δe,e′ is the Kronecker delta.

Let H be the Kirchhoff Laplacian on G and denote by (λk)∞k=0 the increasing
sequence of its eigenvalues (counted with multiplicity). Consider the following
discrete measure on the real line (aka ”counting measure of the wave spectrum”)

µ = (g + 1)δ0 +

∞∑
k=1

δ√λk
+ δ−

√
λk
, (3.1)

where δx is the Dirac measure centered at x ∈ R. Taking into account Weyl’s
law (2.5), µ defines a tempered distribution. The trace formula expresses the Fourier
transform of µ (taken in the distributional sense) in terms of the periodic orbits.
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Theorem 3.1 (see [44, 45, 57]). Let G = (V, E , `) be a finite metric graph. Then,
in the sense of distributions,

µ̂ = 2vol(G)δ0 +
∑
p∈P

s(p)`(prim(p))
(
δ`(p) + δ−`(p)

)
, (3.2)

where vol(G) =
∑
e∈E `(e). That is, for all functions f : R → R belonging to the

Schwartz space of rapidly decaying functions S(R),

(g + 1)f̂(0) +

∞∑
k=1

f̂(
√
λk) + f̂(−

√
λk)

= 2vol(G)f(0) +
∑
p∈P

s(p)`(prim(p))
(
f(`(p)) + f(−`(p))

)
,

where the Fourier transform is normalized as f̂(ξ) =
∫
R e
−iξxf(x)dx, ξ ∈ R.

The trace formula is a cornerstone for many developments around spectral theory
of metric graphs, see e.g. [11, 30, 31, 44] and the references therein. In the following,
we briefly discuss three different directions from which the result can be viewed.

3.1. Crystalline measures. Applying the trace formula (3.2) to a circle C of
length one we recover a well-known result - the Poisson summation formula∑

k∈Z
f̂(2πk) =

∑
k∈Z

f(k), (3.3)

which holds for all functions f in the Schwartz space S(R). Indeed, the circle C can
be viewed as a metric graph (e.g., an n-cycle with all edge lengths equal to 1/n) and
the spectrum of the Kirchhoff Laplacian is generated by an arithmetic progression
σ(H) = {(2πk)2| k ∈ Z}, where all non-zero eigenvalues have multiplicity two.

One may then pose the following question:

What kind of ”Poisson formulas” exist?

This leads to the following notion: a crystalline measure is a measure of the form
µ =

∑
x∈X axδx on R (with real or complex coefficients ax) such that µ is a tempered

distribution, its Fourier transform is again of the form µ̂ =
∑
λ∈Λ bλδλ and the sets

X,Λ ⊆ R are discrete [48] (see also [21, page 215] for its connection to the Riemann
hypothesis). By (3.3), arithmetic progressions lead to crystalline measures, and
conversely, it is known that every crystalline measure satisfying additional condi-
tions stems from arithmetic progressions. On the other hand, Kurasov and Sarnak
recently obtained a detailed description of the arithmetic structure of metric graph
spectra, which, naively speaking, says that generically σ(H) is very far from an
arithmetic progression [47, 58]. In particular, for almost every metric graph, the
measure µ in (3.1) provides a rather ”unexpected” example of a crystalline mea-
sure (note that the supports of µ and µ̂ are discrete since σ(H) ⊆ R is discrete and
there are only finitely many periodic orbits with length smaller than a fixed num-
ber). Whereas there are several other constructions of crystalline measures (see the
references in [47, 49, 51, 54]), metric graphs provide the first non-trivial examples
of so-called positive Fourier quasi-crystals (note that all coefficients of Dirac mea-
sures in (3.1) are positive) and have additional properties answering several open
questions [47]. For further information and references, we refer to the recent works
[47, 49, 51].
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Figure 1. A Riemann surface Xt, which is close to being singular,
and a metric graph emerging from the degeneration in the limit.

3.2. Metric graphs and Riemann surfaces. Another viewpoint on analysis on
metric graphs stems from the appearance of metric graphs (sometimes under the
name tropical curve) in algebraic and tropical geometry, see e.g. [1, 5, 8, 20]. For
instance, they appear in context with degenerating families of Riemann surfaces.
In simplified terms, one considers a ”nice” family Xt, t > 0, of compact Riemann
surfaces Xt (these are analytifications of smooth complex algebraic curves), which
in the limit t→ 0 converge to a nodal Riemann surface X0. The latter corresponds
to a singular curve with the mildest type of singularities. The so-called dual graph
Gd = (V, E) of the singular Riemann surface X0 captures its combinatorics: the
vertices are the irreducible components of X0 and the edges between two vertices
correspond to intersection points of those two irreducible components. The graph
Gd can be equipped with suitable edge lengths describing the degeneration, leading
to a metric graph G (see Figure 3.2).

Many classical algebraic-geometric and complex-analytic results on Riemann sur-
faces have a metric graph counterpart, see e.g. [6, 7, 20, 50]. For works studying the
convergence of analytic objects on degenerating Riemann surfaces to their metric
graph versions from an analytic point of view, we only refer to some very recent
papers [3, 4, 18, 59, 61] and the references therein.

Turning to spectral theory, from this perspective it seems natural to view the
trace formula for compact metric graphs as an analog of Selberg’s trace formula for
compact hyperbolic Riemann surfaces, which relates the eigenvalues of the Laplace–
Beltrami operator to closed oriented geodesics and their lengths [35]. Note however
that, when the Riemann surfaces degenerate, their smallest eigenvalues converge
(after rescaling) to eigenvalues of a Laplacian on a discrete (not metric!) graph
[13, 14]. Another interesting spectral parallel concerns an inequality by Yang–Yau
[63], which estimates the smallest non-zero eigenvalue of a compact Riemann surface
by its gonality (the minimum degree of a holomorphic map to the Riemann sphere
P1). Analogs for metric and discrete graphs were obtained in [2, 16], where gonality
can be defined using harmonic maps from graphs to trees [20] (trees provide graph
analogs of P1 since they are the graphs with first Betti number g = 0).

3.3. Inverse spectral problems. The trace formula turns out to be useful in
context with inverse problems in spectral geometry of metric graphs. Recall that
the famous question ”Can One Hear the Shape of a Drum?” (e.g., the title of a
well-known article by M. Kac [36]) asks if a geometric object is uniquely determined
by the spectrum of an associated (Laplacian) operator. A possible metric graph
version of this question reads as follows: ”does the spectrum σ(H) of the Kirchhoff
Laplacian determine the underlying finite metric graph G?” In case that the edge
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lengths `(e), e ∈ E , are linearly independent over Q, this indeed turns out to be the
case (see [31, 46]). The proofs in [31, 46] are direct applications of the trace formula,
and essentially recover G from the right-hand side of (3.2). However, analogous to
Laplacians on Riemannian manifolds or discrete graphs, the answer turns out to
be negative for general metric graphs. We refer to [11, Section 7.1] for further
references on constructions of isospectral metric graphs and related problems.

4. Self-adjointness

The aim of this section is to discuss self-adjointness and Markovian uniqueness
of the Kirchhoff Laplacian H on a metric graph G = (V, E , `).

4.1. Self-adjointness and Markovian uniqueness. We begin by recalling basic
facts about self-adjointness and Markovian uniqueness (see also [22, Chapter 1]).

Self-adjointness is the first mathematical problem arising in any quantum me-
chanical model (see, e.g., [55, Chap. VIII.11]). Namely, usually a formally sym-
metric expression for the Hamiltonian has some natural domain of definition in a
given Hilbert space H and then one has to verify that it gives rise to a self-adjoint
operator A : dom(T ) ⊆ H → H, that is, the equality A∗ = A holds 2. This property
is closely connected to the Cauchy problem for the Schrödinger equation

i∂tu(t) = Au(t), u|t=0 = u0 ∈ H. (4.1)

It is exactly the self-adjointness of A which ensures the existence and uniqueness
of solutions to (4.1). Otherwise, there are infinitely many self-adjoint restrictions3

Ã : dom(Ã) ⊆ H → H (obtained by restricting A to suitable smaller domains

dom(Ã) ⊆ dom(A)) and one has to choose the right one modeling the phenomenon
in question, the so-called observable. In the context of differential operators on
a geometric domain with boundary, this often corresponds to imposing boundary
conditions. On the other hand, a self-adjoint operator has no non-trivial self-adjoint
restrictions, and for this reason self-adjointness is sometimes also called self-adjoint
uniqueness. For instance, the Laplacian on a bounded domain Ω ⊆ RN is not self-
adjoint. Imposing Dirichlet or Neumann boundary conditions, respectively, leads
to two different self-adjoint restrictions and hence Schrödinger equations. Naively
speaking, self-adjointness of the Kirchhoff Laplacian H in the L2-space L2(G) means
that, in the sense of quantum mechanics, there is a ”unique meaningful Schrödinger
equation on G” (associated to H).

On the other hand, when studying a diffusion process on some metric measure
space X (e.g., Brownian motion on a Riemannian manifold), one is led to the

2We recall that, for a densely defined operator A : dom(A) ⊆ H → H in a Hilbert space H,

its adjoint operator A∗ : dom(A∗) ⊆ H → H is defined by introducing the domain of definition
dom(A∗) = {g ∈ H| ∃h ∈ H with (Af, g)H = (f, h)H∀f ∈ dom(A)} and then setting A∗g := h for

g ∈ dom(A∗).
3Here we suppose that A0 := A∗ is a symmetric operator with equal deficiency indices, which

holds true in our context. Note also that our formulation is slightly non-standard, since we consider
the maximal operator A. Equivalently and perhaps more common, one can start with a closed,
symmetric operator A0 (the minimal operator) and ask for its self-adjoint extensions, which are

exactly the self-adjoint restrictions of A = A∗0. In our context the minimal operator H0 = H∗

is obtained by restricting H to compactly supported functions and taking the closure in L2(G).

However, in order to keep the exposition short, we do not to introduce this additional operator.
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Cauchy problem for the heat equation

∂tu(t) = Au(t), u|t=0 = u0 ∈ L2(X). (4.2)

In order to ensure that solutions have properties reflecting heat diffusion, one con-
siders (4.2) for so-called Markovian operators. More precisely, we require that
A : dom(A) ⊆ L2(X) → L2(X) is self-adjoint, non-negative and the semigroup
(e−tA)t>0 is positivity preserving and L∞ contractive (i.e., for a function 0 ≤ f ≤ 1
in L2(X), we have 0 ≤ e−tAf ≤ 1 for all t > 0). By the Beurling–Deny criteria, A
is Markovian exactly when its quadratic form is a Dirichlet form (see e.g. [17]).

Analogous to Laplacians on Riemannian manifolds and discrete graph Lapla-
cians, the Kirchhoff Laplacian H on a metric graph G has the following properties.
If H is self-adjoint, it is automatically Markovian. If H is not self-adjoint, then
it has both Markovian and non-Markovian self-adjoint restrictions. By Markovian
uniqueness we mean that the Kirchhoff Laplacian H has a unique Markovian re-
striction4. Self-adjointness clearly implies Markovian uniqueness, but the opposite
direction does not hold. Naively speaking, Markovian uniqueness means that, in
the sense of diffusion processes, there is a ”unique meaningful heat equation on G”
(associated to H).

4.2. Self-adjointness criteria. We begin by reviewing sufficient conditions for
self-adjointness. Recall that in the natural path metric %0 on the metric graph G,
the distance %0(x, y) between two points x, y ∈ G is the arc length of the shortest
continuous path connecting them (see Section 2.1). The so-called star metric %m is
obtained by changing the arc length of an edge eu,v connecting u, v ∈ V to

`m(eu,v) := m(u) +m(v) :=
∑
e∈Eu

`(e) +
∑
e∈Ev

`(e),

and again taking lengths of shortest connecting paths (now w.r.t. to `m).
The following conditions imply that the Kirchhoff Laplacian H is self-adjoint:

(i) G is finite
(ii) edge lengths are bounded from below, infe∈E `(e) > 0 ([11, Theorem 1.4.19])

(iii) (G, %0) is a complete metric space ([32, Theorem 3.49] or [24, Corollary 4.9])
(iv) (G, %m) is a complete metric space ([24, Theorem 4.11])

It is easily shown that each condition is weaker than the previous one. Condition
(iii) is an analog of a result for manifolds, which ensures that the Laplace–Beltrami
operator on complete Riemannian manifolds is self-adjoint [56], whereas condi-
tion (iv) does not seem to have a manifold counterpart (for further discussion,
see also [42, Section 7]). On the other hand, simple examples show that none of
the above conditions are necessary and obtaining a complete characterization of
self-adjointness is probably quite difficult, see e.g. [39, Remark 4.12 and Section 7].

4.3. Markovian uniqueness and graph ends. In contrast to self-adjointness,
Markovian uniqueness on metric graphs admits an explicit geometric characteriza-
tion. In the remainder of the section, we describe the results of Kostenko, Mugnolo
and the author from [39] (see also [40] and [42, Section 7.2]). In what follows,
let G = (V, E , `) be an infinite metric graph (as discussed above, for finite metric
graphs, self-adjointness and hence Markovian uniqueness always holds).

4Equivalently, the corresponding minimal Kirchhoff Laplacian H0 = H∗ has a unique Markov-
ian extension.
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Figure 2. The three infinite graphs Gd = Z, Gd = Z2 and Gd = T4

(the infinite 4-regular tree). They have two, one and infinitely
many ends, respectively.

The approach is based on the notion of ends of metric graphs. A result by
Freudenthal says that every (nice) topological space X can be compactified by
adding its so-called topological ends [27]. For an infinite metric graph G, these
can be defined as follows: Fix an exhausting sequence G0 ⊂ G1 ⊂ G2 ⊂ . . . of G
consisting of finite metric subgraphs Gn, n ∈ N. A topological end γ of G is an
infinite decreasing sequence U0 ⊃ U1 ⊃ U2 . . . of open subsets Un ⊆ G such that
each Un is a non-compact connected component of G \ Gn (different exhaustions
(Gn)n∈N lead to equivalent notions).

The topological ends of G = (V, E , `) also admit a combinatorial description in
terms of the underlying combinatorial graph Gd = (V, E). We define a ray in Gd as
an infinite sequence of distinct vertices (vn)n∈N such that vn ∼ vn+1 for all n ∈ N.
Two rays R1,R2 are called equivalent, if there is a third ray meeting both R1 and
R2 infinitely many times. A graph end of Gd is an equivalence class of rays (see
Figure 2). It turns out that the topological ends of G and the graph ends of Gd are
in bijection: vaguely speaking, for each graph end there is a unique topological end
γ = (Un)n∈N such that the respective rays end up in the sets Un (see [19, Section
8.6] or [62, Section 21] for details).

Abusing the notation, in the following we will not distinguish between the topo-
logical ends of G and the graph ends of Gd, and simply speak of the ends of G.

From the historical point of view, ends of graphs were introduced independently
by Freudenthal and Halin. They play an important role in the study of infinite
graphs [19, Chapter 8] and provide one of the simplest boundary notions for com-
pactifications of infinite graphs [62]. On the other hand, the origins of the notion are
closely connected to group theory and the investigations of Freudenthal and Hopf
[27, 28, 33]. Recall that, given a finitely generated group G and a finite symmetric
generating set S, the Cayley graph C(G, S) is the graph with vertex set V = G and
two elements x, y ∈ G are neighbors exactly when xy−1 ∈ S. By a result going
back to Freudenthal and Hopf, a Cayley graph of an infinite group has either one,
two or infinitely many ends, and, moreover, the number of ends is independent
of the generating set S. A classification of the respective cases in terms of group
properties was completed later by Stallings, see e.g. [29, Chapter 13]. For example,
the graphs depicted in Figure 2 are Cayley graphs of the groups G = Z, G = Z2

and G = F2 (the free nonabelian group of rank two).

In order to take into account the metric (not just topological or combinatorial)
structure of the metric graph G, we introduce the following notion. An end γ of
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G has infinite volume, if vol(Un) = ∞ for all Un in the corresponding sequence of
sets (Un)n∈N (this property is independent of the choice of the exhausting sequence
(Gn)n∈N). Otherwise, γ is said to have finite volume. Here vol(A) denotes the
Lebesgue measure of a measurable set A ⊆ G.

This leads to the following characterization of Markovian uniqueness.

Theorem 4.1 ([39]). Let G = (V, E , `) be an infinite metric graph. Then Markovian
uniqueness holds if and only if all ends of G have infinite volume.

We obtain the following corollary in the special case of only one graph end, for
instance for graphs arising from (well-behaved) tilings of the plane R2 or Cayley
graphs of amenable groups which are not virtually infinite cyclic.

Corollary 4.2 ([39]). Let G = (V, E , `) be an infinite metric graph having only one
end. Then Markovian uniqueness holds if and only if G has infinite total volume,
that is, vol(G) =

∑
e∈E `(e) =∞.

In the simple situation when G has only finitely many ends of finite volume,
one can also use boundary conditions on finite volume ends in order to describe a
certain class of self-adjoint restrictions [39, 40]. Moreover, although Laplacians on
metric graphs, Riemannian manifolds and discrete graphs admit many similarities,
we are not aware of a geometric characterization of Markovian uniqueness in the
other two cases (see [42, Section 7.2] for further discussion and references).

5. Connections to discrete graph Laplacians

In this section, we discuss another interesting feature of quantum graphs: their
close relations to discrete graph Laplacians. In what follows, let G = (V, E , `) be a
metric graph (finite or infinite).

5.1. Equilateral metric graphs. The connection to discrete Laplacians is most
evident for equilateral metric graphs, meaning that all edges e ∈ E have unit length
`(e) = 1. In this simple case, the Kirchhoff Laplacian H is closely connected to the
so-called normalized Laplacian on Gd = (V, E) (note also that H is self-adjoint, see
Section 4.2). More precisely, the normalized Laplacian h : `2(V; deg) → `2(V; deg)
is defined in the Hilbert space

`2(V; deg) =
{

f : V → C| ‖f‖2`2(V;deg) :=
∑
v∈V
|f(v)|2 deg(v) <∞

}
with the inner product (f ,g) =

∑
v∈V f(v)ḡ(v) deg(v). It maps f ∈ `2(V; deg) to

hf ∈ `2(V; deg) given by

(hf)(v) =
1

deg(v)

∑
u∼v

(
f(v)− f(u)

)
, v ∈ V. (5.1)

It is easy to check that h is a bounded, self-adjoint operator in `2(V; deg) with
spectrum σ(h) ⊆ [0, 2]. The normalized Laplacian appears in many areas of math-
ematics, physics and engineering. It serves as the generator of the simple random
walk on Gd (i.e., a walker at a vertex v ∈ V jumps to an adjacent vertex w ∼ v cho-
sen uniformly at random). In the case of Cayley graphs, the study of connections
to algebraic properties of the underlying group was initiated in the work of Kesten
[37] (actually, in his PhD thesis). Moreover, the relationship between the spectral
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properties of h and various graph parameters is one of the core topics within the
field of Spectral Graph Theory (see [12, 15] for further details).

In the equilateral case, the Kirchhoff Laplacian and normalized Laplacian are
connected by the following simple formula (recall also that σ(H) ∪ σ(h) ⊆ [0,∞)).

Theorem 5.1. Let G = (V, E , `) be an equilateral metric graph. If λ ≥ 0 and
λ /∈ {(πn)2;n ∈ N}, then

λ ∈ σ(H) ⇐⇒ 1− cos(
√
λ) ∈ σ(h)

for the Kirchhoff Laplacian H on the metric graph G = (V, E , `) and the normalized
Laplacian h on the underlying combinatorial graph Gd = (V, E).

The equivalence in Theorem 5.1 remains true for specific parts of the spectrum,
such as the discrete and essential spectrum, or the absolutely continuous, pure point
and singular continuous spectrum. These connections were studied and extended
by several authors. We refer to [52] and [11, Section 3.6 and Section 3.8] for an
overview of the results, history and further references.

If the metric graph G is finite, Theorem 5.1 has an elementary proof, which
we reproduce below (see also, e.g., [11, Section 3.6]). Note that in this case, the
discrete Laplacian h is described by a finite, non-negative matrix h ∈ RV×V . In
particular, the spectra of both H and h are discrete and consist only of non-negative
eigenvalues.

Proof of Theorem 5.1 for finite graphs. Consider the eigenvalue equation for the
Kirchhoff Laplacian H,

Hf = λf, f ∈ dom(H). (5.2)

For an eigenvalue λ 6= 0, any eigenfunction f must satisfy the equation −f ′′e = λfe
on every edge e = [0, `(e)] of G. Hence, on an edge e = [0, `(e)] with left and right
endpoints v, w ∈ V,

fe(xe) = ae cos(
√
λxe) + be sin(

√
λxe), xe ∈ e = [0, `(e)],

for some ae, be ∈ C. Clearly, we have ae = f(v) and be = f ′e(v)/
√
λ. Since G is

equilateral, we obtain the equation

f(w)− cos(
√
λ)f(v) = f ′e(v)

sin(
√
λ)√
λ

for all neighbors w ∈ V of some fixed vertex v ∈ V. Summing over all neighbors w
of v, the Kirchhoff conditions imply that

hf = (1− cos(
√
λ))f (5.3)

for the restriction f := f |V : V → C of f to vertices. In particular, if f does not
vanish in all vertices, we arrive at an eigenvalue of the normalized Laplacian h.
However, taking into account the properties of the sinus function, this can only
happen if λ = k2π2 for some k ∈ N. Altogether, we have proven the implication
”⇒” in the above equivalence. The converse direction ”⇐” follows by performing
the above steps in the reverse direction. More precisely, one shows that every
function f : V → C satisfying (5.3) is equal to the restriction f = f |V of a function
f ∈ dom(H) satisfying (5.2). �



12 N. NICOLUSSI

5.2. The general case. If G is not equilateral, then the explicit formula in The-
orem 5.1 breaks down. However, it turns out that in terms of qualitative spec-
tral properties, the Kirchhoff Laplacian H is still connected to a suitable weighted
discrete Laplacian. Consider the vertex weight m : V → (0,∞) and edge weight
b : E → (0,∞) given by

m(v) =
∑
e∈Ev

`(e), v ∈ V, b(e) =
1

`(e)
, e ∈ E . (5.4)

We define a weighted discrete Laplacian h : dom(h) ⊆ `2(V;m)→ `2(V;m) by the
difference expression

(hf)(v) =
1

m(v)

∑
u∼v

b(eu,v)
(
f(v)− f(u)

)
, v ∈ V, (5.5)

on the domain dom(h) = {f ∈ `2(V;m)|hf ∈ `2(V;m)} in the Hilbert space
`2(V;m) = {f : V → C| ‖f‖2`2(V;m) :=

∑
v∈V |f(v)|2m(v) < ∞}. In the equilat-

eral case, m ≡ deg, b ≡ 1, dom(h) = `2(V; deg) and h is the normalized Laplacian.
An immediate way of connecting the Kirchhoff Laplacian H and the discrete

Laplacian h arises by noting a connection between harmonic functions. Namely,
every harmonic function f : G → R (i.e., f ′′ ≡ 0 on every edge and f satisfies
Kirchhoff conditions (2.4)) must be edgewise affine and satisfy

0 =
∑
e∈Ev

f ′e(v) =
∑
u∼v

1

`(eu,v)

(
f(u)− f(v)

)
= (−m · hf)(v)

at each vertex v ∈ V. In particular, the restriction to vertices f := f |V : V → R is
harmonic, i.e., we have hf = 0. Conversely, every harmonic function f : V → R on
V gives rise to a harmonic function f on G by linear interpolation on edges. This
immediately connects, for instance, Liouville-type properties on metric graphs and
weighted discrete graphs (and the corresponding Poisson and Martin boundaries).
Moreover, the weight m(v) of a vertex v ∈ V equals the Lebesgue mass of the ”star”
around it (i.e., the union of all incident edges) and this connects the Hilbert spaces
L2(G) and `2(V;m).

Under the additional assumption that supe∈E `(e) <∞, the connection between
the Laplacians can informally be stated as follows.

Theorem 5.2 ([24]). The Kirchhoff Laplacian H and the weighted discrete Lapla-
cian h have the same ”basic spectral properties”.

For instance, H and h are self-adjoint simultaneously, spectral gaps are strictly
positive simultaneously, and one may connect compactness of the resolvents and
properties of the corresponding heat semigroups (see [24] for a detailed list of con-
nections). However, note that Theorem 5.1 provides an explicit formula relating
numerical values, whereas the connections in Theorem 5.2 are only of qualitative
nature. In particular, Theorem 5.2 is only non-trivial for infinite graphs, since
qualitative spectral properties are well-known already for Kirchhoff Laplacians and
discrete Laplacians on finite graphs. Theorem 5.2 was proven by Exner, Kostenko,
Malamud and Neidhardt, allowing them to further develop spectral theory of infi-
nite quantum graphs by using results on discrete Laplacians [24].
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5.3. Spectral theory of graphs: discrete vs. continuous. A general discrete
graph Laplacian is of the form (5.5) for arbitrary edge and vertex weights m and b.
Note that weights stemming from metric graphs satisfy

m(v) =
∑
e∈Ev

b(e), v ∈ V.

From this perspective, Kirchhoff Laplacians on metric graphs correspond to a
rather special class of discrete Laplacians. However, one can easily introduce also
a weighted version of Kirchhoff Laplacians [42]. This relates to the approach of us-
ing Brownian motion on weighted metric graphs to study random walks on discrete
graphs, which has been employed several times in the stochastics literature (see e.g.
[9, 26, 34, 60] and the references therein). Namely, in the framework of Dirichlet
forms, these two classes of stochastic processes correspond precisely to weighted
Kirchhoff Laplacians and discrete Laplacians.

It turns out that Theorem 5.2 carries over to the setting of weighted Kirchhoff
Laplacians and, allowing in addition graphs with loops, this procedure allows to
recover all discrete Laplacians [38, 41, 42]. Hence naively speaking, in the setting
of infinite locally finite graphs and with respect to basic spectral properties,

”spectral theory of weighted Kirchhoff Laplacians and discrete Laplacians
is equivalent”.

The connections between these two types of operators can be viewed from several
different perspectives (such as spectral, parabolic and global metric properties),
and exactly their rich interplay leads to important further insight on both sides.
For further information on this viewpoint we refer to [38, 41, 42].
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