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Abstract

In this note, asymptotic stability of linear neutral delay-differential systems is investigated.
A delay-independent sufficient condition for the stability of the system is derived in terms of the
spectral radius. The proposed criterion requires more relaxed assumption than those reported
in the literature. The effectiveness of the method is illustrated in numerical examples. ( 1999
The Franklin Institute. Published by Elsevier Science Ltd.

1. Introduction

Consider a linear neutral delay-differential system

xR (t)"Ax (t)#Bx (t!h)#CxR (t!h), (1)

where x (t) is an n-dimensional state vector, A, B and C3Rn]n are constant
matrices, h is a positive constant delay, and the system matrix A is assumed
to be a Hurwitz matrix. That is, all the eigenvalues of A have negative real parts.
The system given in Eq. (1) often appears in the theory of automatic control or
population dynamics. However, it is not easy to establish simple stability criteria for
the system. In the literature, only a few stability analysis methods are investigated
(e.g. [1—5]).

In this note, we present a new delay-independent sufficient condition for asymptotic
stability of the system given in Eq. (1). In the work of [1, 2], the basic assumption such
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that the system matrix A has a negative matrix measure, is required to apply their
stability criteria, while the proposed criterion allows more relaxed assumption that
the system matrix is Hurwitz. Furthermore, the derived sufficient condition is ex-
pressed in terms of the spectral radius of the matrix which is the combination of the
modulus matrices. Therefore, there is better possibility that the proposed criterion is
less conservative than those in the literature [1, 2], which use the matrix norms and
matrix measures.

The rest of this note is organized as follows. In Section 2, we state notations
and well-known lemmas about matrix properties. In Section 3, a sufficient condi-
tion for the stability of the systems, in terms of spectral radius, is derived. To
show the effectiveness of the proposed criterion, numerical examples are given in
Section 4.

2. Preliminaries

To derive main result, we state some notations and lemmas. Let o[R] denote the
largest modulus of the eigenvalues of the matrix R, which is known as the spectral
radius of R. DR D denotes a matrix formed by taking the absolute value of every element
of R, and it is called the modulus matrix of R. I denotes the identity matrix of
appropriate order. j

M
(R) denotes the maximum eigenvalue of matrix R. The relation

R)¹ represents that all the elements of matrices, R and ¹, satisfy r
ij
)t

ij
for all i and

j. Also, ERE"[j
M

(RTR)]1@2 denotes matrix norm of R and k(R)"1
2
j
M

(RT#R)
denotes matrix measure of R.

Also, the following lemma is used for main result.

Lemma 1. Consider any n]n matrices R, ¹, and ».
Part I [6]: If DR D)», then

(a) DR¹ D)DR D D¹ D)» D¹ D,

(b) DR#¹ D)DR D#D¹ D)»#D¹ D,

(c) o[R])o[ DR D])o[»],

(d) o[R¹])o[ DR D D¹ D])o[» D¹ D],

(e) o[R#¹])o[ DR#¹ D])o[ DR D#D¹ D])o[»#D¹ D].

Part II [7]: If o[R](1, then det(I$R)O0.
Part III [8]: If ERE(1, then (I!R)~1 exists and

(I!R)~1"I#R#R2#2.
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3. Sufficient condition for asymptotic stability

In this section, we derive a sufficient condition for the asymptotic stability of the
system given in Eq. (1). For the definition of asymptotic stability, refer to Definitions
1 and 2 in Ref. [1].

Let F (s)"(sI!A)~1, and F
M

be the matrix formed by taking the maximum
magnitude of each element of F (s) for Rs*0. Then, we have

Theorem 1. Assume that ECE(1. ¹hen, the neutral delay-differential system given in
Eq. (1) is asymptotically stable, if the following inequality is satisfied:

oCFMA DB D#
DCA D#DCB D

1!ECE BD(1. (2)

Proof. The characteristic equation of the system given in Eq. (1) is

* (s)"det[sI!A!(B#Cs)exp(!hs)]"0. (3)

Since det[R¹]"det[R]det[¹] for any two n]n matrices R and ¹, so we have

* (s)"det[I!Cexp(!hs)]det[sI!(I!C exp(!hs))~1 ) (A#B exp(!hs))],

(4)

where the matrix (I!Cexp(!hs))~1 exists and det(I!Cexp(!hs))O0 because
ECexp(!hs)E)ECE(1 for Rs*0.

Therefore, if we can show that

det[sI!(I!Cexp(!hs))~1 ) (A#Bexp(!hs))]O0 for Rs*0, (5)

then,

* (s)O0 Rs*0. (6)

Here, Eqs. (5) and (6) guarantee the asymptotic stability of the system given in Eq. (1)
by Hu [2] (Theorem 1).

For simplicity, let m"exp(!hs) and ¹"mC. Then, using the inequality
(I!¹)~1"I#(I!¹)~1¹, the left-hand side of Eq. (5) becomes

det[sI!(I!¹ )~1(A#mB)]

"det[sI!(I#(I!¹)~1¹) (A#mB)]

"det[(sI!A)!mB!(I!¹ )~1(¹A#m¹B)]

"det[sI!A]det[I!(sI!A)~1(mB#(I!¹ )~1(¹A#m¹B))]

"det[sI!A]det[I!F (s)(mB#(I!¹)~1(¹A#m¹B))]. (7)

Therefore, Eq. (5) can be rewritten as

det[sI!A]det[I!F(s)(mB#(I!¹)~1(¹A#m¹B))]O0. (8)
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Since A is a Hurwitz matrix, det[sI!A]O0 for Rs*0. So, Eq. (8) is further
simplified as

det[I!F (s)(mB#(I!¹)~1(¹A#m¹B))]O0 for Rs*0. (9)

Now, if we can show that o[F(s)(mB#(I!¹)~1(¹A#m¹B))](1 for Rs*0, then,
by Part II of Lemma I, Eq. (9) is satisfied.

Using Part I and III of Lemma I, and the inequalities E¹E)ECE and
DmCBD)DCB D for Rs*0, we obtain

o[F(s)(mB#(I!¹)~1 (¹A#m¹B))]

)o[ DF (s) D ) ( DmB D#D (I!¹)~1(¹A#m¹B) D)]

)o[ DF(s) D ) ( DmB D#D(I!¹)~1D ) D (¹A#m¹B) D)]

"o[ DF(s)D ) ( DmB D#D(I#¹#¹2#2) D ) ( D¹A D#Dm¹B D ))]

)o[F
M
) ( DB D#EI#¹#¹2#2EI ) ( D¹A D#D¹BD))]

)o[F
M
) ( DB D#(EIE#E¹E#E¹E2#2)I ) ( DCA D#DCB D ))]

)o[F
M
) ( DB D#(1#ECE#ECE2#2)I ) ( DCA D#DCB D ))]

"o[F
M
) ( DB D#

1

1!ECE
) ( DCAD#DCB D))](1. (10)

Thus, this completes the proof. K

Remark 1. Since the system matrix A is Hurwitz, the matrix F
M

always exists and it
can obtained for some s on imaginary axis by the maximum modulus theorem.

Remark 2. In the literature [1, 2], the sufficient conditions for stability of the system
Eq. (1) are derived as

Li [1]: k (A)#
EBE#EAE ) ECE

1!ECE
(0 for ECE(1, (11)

Hu [2]: k (A)#EBE#
ECAE#ECBE

1!ECE
(0 for ECE(1, (12)

Hu [2]: k (A)#EBE#
q
+
j/1

MECjAE#ECjBEN

#

ECq`1AE#ECq`1BE
1!ECE

(0 for ECE(1 and q*1, (13)

Hu [2]: k (A~1)#EA~1CE

#

EA~1BA~1E#EA~1BA~1CE
1!EA~1BE

(0 for EA~1BE(1. (14)
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The above sufficient conditions require the assumption that k(A)(0 or k (A~1)(0,
while Theorem I allows more relaxed assumption that A is a Hurwitz matrix.
Furthermore, the stability criterion of Theorem I is expressed in terms of the spectral
radius of the matrix which is the combination of the modulus matrices. Therefore,
there is better possibility that the proposed criterion is less conservative than those in
Eqs. (11)—(14), which use the matrix norms and matrix measure.

Remark III. If C"0, the system Eq. (1) becomes a linear retarded delay-differential
system, i.e.,

xR (t)"Ax (t)#Bx (t!h). (15)

Then, by Theorem I, sufficient condition for the stability of system (15) is obtained as

o[F
M

DB D](1. (16)

4. Numerical examples

To demonstrate the application of the result, we give the following two examples.

Example 1. Consider the following system

xR (t)"Ax (t)#Bx (t!h)#CxR (t!h),

where

A"C
!3

1

!2

0 D, B"aC
0

1

1

0D , C"C
0.1

0

0

0.1D
and a is a nonzero constant.

We now determine the stability bound in terms of a. Since k (A)"0.0811'0 and
k(A~1)"0.0406'0, the criteria of Li [1] and Hu [2] are not applicable. However,
the system matrix A is Hurwitz, therefore Theorem I can be applied. The rational
function matrix F (s) and F

M
are computed as

F (s)"

2

s2#3s#2

1

s2#3s#2

!2

s2#3s#2

s#3

s2#3s#2

, F
M
"

1

3

1

2

1

3

2

.

Then, using the inequality (2), we obtain the bound of a as

DaD(0.4.

Example 2. Consider the system

xR (t)"C
!2

0

0

!1D x (t)#C
0

a
a
0D x (t!h)#C

0

0.2

0.2

0 D xR (t!h).

J.-H. Park, S. Won / Journal of the Franklin Institute 336 (1999) 543—548 547



It is clear that the system matrix A is Hurwitz and also the matrix measure k (A) is
negative. So, all the criteria can be applied.

With simple calculation, we obtain the bound of a for stability as

Li [1] (Eq. (11)): DaD(0.4

Hu [2] (Eq. (12)): DaD(0.4

Hu [2] (Eq. (13)): DaD(0.4 (In case of q"10)

Hu [2] (Eq. (14)): DaD(0.334

Theorem I (Eq. (2)): DaD(0.825.

In the example, we can see that the sufficient condition of Theorem I is less conserva-
tive than others.
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