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A NOTE ON STOCHASTIC ORDERING OF THE LATENT TRAIT USING THE SUM
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In contrast to dichotomous item response theory (IRT) models, most well-known polytomous IRT
models do not imply stochastic ordering of the latent trait by the total test score (SOL). This has been
thought to make the ordering of respondents on the latent trait using the total test score questionable and
throws doubt on the justifiability of using nonparametric polytomous IRT models for ordinal measure-
ment. We show that a broad class of polytomous IRT models has a weaker form of SOL, denoted weak
SOL, and argue that weak SOL justifies ordering respondents on the latent trait using the total test score
and, therefore, the use of nonparametric polytomous IRT models for ordinal measurement.
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In the social and behavioral sciences, tests and questionnaires are frequently used to measure
the position of respondents on a latent variable Θ (often called a latent trait). In item response
theory (IRT) it is assumed that Θ explains the association between the item scores. An IRT model
is used to model the item scores as a function of Θ and to measure the respondents’ Θ values.
A special class of IRT models consists of nonparametric IRT models (for an overview, see, e.g.,
Junker & Sijtsma, 2001; Sijtsma & Molenaar, 2002). A nonparametric IRT model consists of a
set of weak assumptions about the relation between the item scores and Θ . The idea is to obtain
useful measurement properties with as few restrictions on the data as possible. Let a test consist
of J items each having m + 1 ordered answer categories, which are scored Xj = 0,1, . . . ,m for
j = 1, . . . , J . For dichotomous item scores (i.e., m = 1), this set of assumptions may be:

Unidimensionality: Θ is unidimensional,
Local independence: The item scores are independent given Θ , and
Monotonicity: The probability of obtaining a score Xj = 1 given Θ = θ , denoted P(Xj = 1|θ),

is a nondecreasing function of θ for all j

(e.g., see Sijtsma & Molenaar, 2002). Nonparametric IRT models that satisfy this set of assump-
tions include the monotone homogeneity model and the double monotonicity model (Mokken,
1971; also, see Sijtsma & Molenaar, 2002). Also, parametric IRT models, such as the Rasch
(1960) model and the two- and three-parameter logistic models (Birnbaum, 1968) satisfy this set
of assumptions.

In nonparametric IRT, the total test score, X+ = ∑J
j=1 Xj , is used to measure a respondent’s

Θ value. For dichotomous item scores, Grayson (1988), Huynh (1994), Ünlü (2008) (also see
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Ghurye & Wallace, 1959) showed that unidimensionality, local independence, and monotonicity
imply monotone likelihood ratio of X+ in Θ (MLR), which is defined as

P(X+ = K|θA)

P (X+ = C|θA)
≤ P(X+ = K|θB)

P (X+ = C|θB)

for 0 ≤ C < K ≤ Jm and for any two respondents A and B with θA < θB . Monotone likelihood
ratio implies that Θ is stochastically ordered by X+ (Lehmann, 1959, p. 74); that is,

P
(
Θ > t |X+ = C

) ≤ P
(
Θ > t |X+ = K

) ∀t,0 ≤ C < K ≤ Jm. (1)

Equation (1) is referred to as a stochastic ordering of the latent trait by the total test score X+
(SOL; Hemker, Sijtsma, Molenaar, & Junker, 1997). Grayson’s result implies that if unidimen-
sionality, local independence, and monotonicity hold, it is reasonable to order respondents on the
latent variable Θ using the observable test score X+. For example, it follows from (1) that

E
(
Θ|X+ = C

) ≤ E
(
Θ|X+ = K

)
.

In general, Grayson’s result does not hold for polytomously scored items (m > 1). Hemker,
Van der Ark, and Sijtsma (2001) provided the Venn diagram in Figure 1, showing the hier-
archical relationships among 17 IRT models for polytomously scored items. In Figure 1, the
nonparametric graded response model (np-GRM; Hemker et al., 1997; a.k.a. the monotone ho-
mogeneity model for polytomously scored items; Molenaar, 1997) is the most general model; it
assumes unidimensionality, local independence, and a special form of monotonicity stating that
P(Xj ≥ x|θ) is nondecreasing in θ for j = 1, . . . , J and x = 1, . . . ,m. All other models depicted
in Figure 1 imply these assumptions as well but they also have additional assumptions.

Only the partial credit model (Masters, 1982) and special cases of this model (e.g., the rat-
ing scale model, Andrich, 1978) imply SOL (Hemker et al., 1997, 2001). All other IRT mod-
els for polytomously scored items do not imply SOL. Hence, under well-known models such
as the generalized partial credit model (Muraki, 1992), the graded response model (Samejima,
1969), and the np-GRM, there was no theoretical justification to order respondents on Θ us-
ing X+. Sufficient conditions for SOL have been formulated for the generalized partial credit
model (Van der Ark, 2005), but these conditions are so restrictive that they are unlikely to hold
in practice. Van der Ark (2005) and DeMars (2008) used simulations to study conditions under
which SOL is violated.

To alleviate these problems, we propose to modify SOL (1) to a weaker version, denoted
weak SOL. Weak SOL holds if

P
(
Θ > t |X+ < K

) ≤ P
(
Θ > t |X+ ≥ K

)
for all t and 0 < K ≤ Jm. (2)

We have some remarks on the relation of weak SOL to SOL and other ordering properties.
First, the stronger property SOL (1) implies weak SOL (Lemma 1; Appendix). Second, weak
SOL implies that E(Θ|X+ < K) ≤ E(Θ|X+ ≥ K) for K = 1, . . . , Jm (e.g., Shaked & Shan-
tikumar, 1994, p. 4). Third, weak SOL is equivalent to positive dependence in terms of global
odds ratios, that is,

P(Θ > t,X+ ≥ K)P (Θ ≤ t,X+ < K)

P (Θ ≤ t,X+ ≥ K)P (Θ > t,X+ < K)
≥ 1 for all t and 0 < K ≤ Jm (3)

(Lemma 2, Appendix). Positive dependence in terms of global odds ratios was studied by Dou-
glas, Fienberg, Lee, Sampson, and Whitaker (1990) in the context of contingency tables with or-
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FIGURE 1.
Venn diagram showing the hierarchical relationships among 17 polytomous IRT models. The least restrictive model is
the nonparametric graded response model (np-GRM), the most restrictive models are the rating scale model (RSM), the
sequential rating scale model (SRSM), and a rating scale version of the restricted graded response model (GRSM). Only
the partial credit model (PCM) and the rating scale model (RSM), which have been depicted with a shaded background,
imply SOL.

dinal variables. Fourth, a concept somewhat related to weak SOL was introduced by Scheiblech-
ner (2002) (also, see Scheiblechner, 2007). He proposed the property of monotone likelihood
ordering (MLO). Let XiA and XiB denote the score of respondents A and B on item i, respec-
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tively; then MLO is defined as

P
(
θA < θB |XiA < XiB

)
> P

(
θA > θB |XiA < XiB

)

for all pairs of respondents A and B and for i = 1, . . . , J .
The main result of this note is a theorem stating that the most general IRT model, the np-

GRM (see Figure 1), implies weak SOL (2). All other IRT models in Figure 1 are a special case
of the np-GRM (see Van der Ark, 2001, for an overview of the proofs), and, therefore, a corollary
of the theorem is that all IRT models in Figure 1 imply weak SOL.

Theorem. The np-GRM implies weak SOL.

Proof: Hemker et al. (1997, Theorem 1) showed that the np-GRM implies stochastic ordering
of the manifest variable X+ by Θ (abbreviated SOM). SOM means that

P
(
X+ ≥ K|θ)

is nondecreasing in θ for 0 ≤ K ≤ Jm. (4)

With I (.) the indicator function, let IK denote the binary random variable I (X+ ≥ K), and let
fIK,Θ denote the joint density of (IK,Θ); this is a density with respect to the product of counting
measure and Lebesgue measure. Also, let fIK |Θ denote the conditional density of IK given Θ .
Then

Equation (4)

⇐⇒ fIK |Θ(1|θB) ≥ fIK |Θ(1|θA) ∀θA < θB,0 < K ≤ Jm

⇐⇒ fIK |Θ(1|θB)

fIK |Θ(0|θB)
≥ fIK |Θ(1|θA)

fIK |Θ(0|θA)
∀θA < θB,0 < K ≤ Jm

⇐⇒ fIK,Θ(1, θB)

fIK,Θ(0, θB)
≥ fIK,Θ(1, θA)

fIK,Θ(0, θA)
∀θA < θB,0 < K ≤ Jm

⇐⇒ fIK,Θ(1, θB)fIK,Θ(0, θA) ≥ fIK,Θ(1, θA)fIK,Θ(0, θB)

∀θA < θB,0 < K ≤ Jm. (5)

By integrating both sides over θA ≤ t and θB > t , (5) yields

P(X+ ≥ K,Θ > t)P (X+ < K,Θ ≤ t) ≥ P(X+ < K,Θ > t)P (X+ ≥ K,Θ ≤ t)

for all t and for 0 < K ≤ Jm, (6)

from which (3) immediately follows. It follows from Lemma 2 (Appendix) that (3) is equivalent
to weak SOL. �

A numerical example illustrates that under particular item response theory models SOL can
be violated whereas weak SOL holds.

Example (The graded response model implies weak SOL but does not imply SOL). Assume that
the response probabilities of two trichotomous items are given by a graded response model; that
is,

P
(
Xj ≥ x|θ) = exp(αj (θ − βjx))

1 + exp(αj (θ − βjx))
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FIGURE 2.
Six plots illustrating weak SOL and a violation of SOL for two trichotomous items under the graded response model.
For details, see text. (a) P(Xj ≥ x|θ) as a function of θ for x = 1,2. (b) P(Θ > t |X+ = K) as a function of t for
K = 0, . . . ,4. P(Θ > t |X+ < K) and P(Θ > t |X+ ≥ K) as a function of t for K = 1 (c), K = 2 (d), K = 3 (e), and
K = 4 (f).

for j = 1,2 and x = 1,2, with discrimination parameters α1 = 1
2 and α2 = 2, and location pa-

rameters β11 = β22 = 0, β12 = −1, and β21 = −5. Also, assume that Θ has a standard normal
density (we approximated the standard normal density by a histogram of 10001 equally sized in-
tervals of Θ in the range [−5;5]). Figure 2a shows the two item step response functions P(Xj ≥
x|θ), x = 1,2, for item 1 (solid line) and item 2 (dashed line). Figure 2b shows the conditional
probabilities P(Θ > t |X+ = x+) as a function of t for x+ = 0 (dotted line), x+ = 1 (dashed
thin line), x+ = 2 (dashed line), x+ = 3 (solid line), and x+ = 4 (solid thick line). The lines in
Figure 2b are nonincreasing by definition. An incorrect ordering of the lines in terms of (1) for at
least some values of t indicates a violation of SOL. Figure 2b shows that SOL is violated because
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TABLE 1.
Values of E(Θ|X+ = K), E(Θ|X+ ≤ K), and E(Θ|X+ > K) for K = 0, . . . ,4
for the graded response model in the Example, rounded to three decimals. Vio-
lations of SOL are printed in boldface.

K E(Θ|X+ = K) E(Θ|X+ < K) E(Θ|X+ ≥ K)

0 −2.103 NA 0.000
1 −0.734 −2.103 0.001
2 0.233 −0.736 0.295
3 −0.125 −0.266 0.333
4 0.773 −0.226 0.773

for almost all values of t (i.e., t ∈ [−4.658;4.993]), P(Θ > t |X+ = 2) > P (Θ > t |X+ = 3). The
lines in Figures 2c, d, e, and f show P(Θ > t |X+ < K) (dashed line) and P(Θ > t |X+ ≥ K)

(solid line) for K = 1, . . . ,4, respectively, as functions of t . A violation of weak SOL would be
indicated by an intersection. Because the graded response model implies weak SOL, there are no
intersections. Table 1 shows the values of E(Θ|X+ = K), E(Θ|X+ < K), and E(Θ|X+ ≥ K).
The expected latent trait value is less for a respondent with X+ = 3 than for a respondent with
X+ = 2 indicating a violation of SOL. Using weak SOL means comparing E(Θ|X+ < K) and
E(Θ|X+ ≥ K) for K = 0, . . . ,4. Note that E(Θ|X+ ≥ 0) = E(Θ) = 0. Also note that in this
particular example, E(Θ|X+ < K) and E(Θ|X+ ≥ K) are increasing in K . In general, this need
not be true.

The theorem shows that all popular nonparametric IRT models for polytomously scored
items can be used for ordinal person measurement; yet the ordering properties are weaker than
SOL or monotone likelihood ratio. The papers of Hemker et al. (1996, 1997, 2001), in which it
was shown that nonparametric IRT models do not imply SOL and monotone likelihood ratio, may
have led to the belief that there is no justification for nonparametric IRT models for polytomous
item scores. The theorem provides this justification. The difference between SOL and weak SOL
in applications was illustrated in the example. Whereas SOL allows ordering of the respondents’
expected latent trait values based on individual total test scores, weak SOL allows ordering of
the expected latent trait values for a high total test score group on the one hand and a low total
test score group on the other hand.
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Appendix

Lemma 1. SOL implies weak SOL.

Proof: Starting with SOL (1), we obtain:

SOL ⇐⇒ P(Θ > t |X+ = C)

P (Θ ≤ t |X+ = C)
≤ P(Θ > t |X+ = K ′)

P (Θ ≤ t |X+ = K ′)
∀t,0 ≤ C < K ′ ≤ Jm
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⇐⇒ P(Θ > t,X+ = C)

P (Θ ≤ t,X+ = C)
≤ P(Θ > t,X+ = K ′)

P (Θ ≤ t,X+ = K ′)
∀t,0 ≤ C < K ′ ≤ Jm

⇐⇒ P(Θ > t,X+ = C)P
(
Θ ≤ t,X+ = K ′)

≤ P
(
Θ > t,X+ = K ′)P(Θ ≤ t,X+ = C) ∀t,0 ≤ C < K ′ ≤ Jm

⇐⇒ P
(
X+ = K ′,Θ > t

)
P(X+ = C,Θ ≤ t)

≥ P(X+ = C,Θ > t)P
(
X+ = K ′,Θ ≤ t

) ∀t,0 ≤ C < K ′ ≤ Jm.

Summing both sides of the last inequality over C < K and K ′ ≥ K yields (6), which implies
weak SOL (see the lines below (6)). �

Lemma 2. Weak SOL and (3) are equivalent.

Proof: We have

Equation (3) ⇐⇒ P(Θ > t,X+ ≥ K)

P (Θ ≤ t,X+ ≥ K)
≥ P(Θ > t,X+ < K)

P (Θ ≤ t,X+ < K)
∀t,0 < K ≤ Jm

⇐⇒ P(Θ > t |X+ ≥ K)

P (Θ ≤ t |X+ ≥ K)
≥ P(Θ > t |X+ < K)

P (Θ ≤ t |X+ < K)
∀t,0 < K ≤ Jm

⇐⇒ P(Θ > t |X+ ≥ K)

1 − P(Θ > t |X+ ≥ K)
≥ P(Θ > t |X+ < K)

1 − P(Θ > t |X+ < K)
∀t,0 < K ≤ Jm

⇐⇒ P(Θ > t |X+ ≥ K) ≥ P(Θ > t |X+ < K) ∀t,0 < K ≤ Jm,

which is weak SOL. �
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