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A NOTE ON STRONGLY %-CLEAN RINGS

JiaN Culr AND ZHOU WANG

ABSTRACT. A *-ring R is called (strongly) *-clean if every element of R is
the sum of a projection and a unit (which commute with each other). In
this note, some properties of *-clean rings are considered. In particular, a
new class of x-clean rings which called strongly 7-*-regular are introduced.
It is shown that R is strongly m-*-regular if and only if R is w-regular and
every idempotent of R is a projection if and only if R/J(R) is strongly
regular with J(R) nil, and every idempotent of R/J(R) is lifted to a
central projection of R. In addition, the stable range conditions of *-clean
rings are discussed, and equivalent conditions among *-rings related to
*-cleanness are obtained.

1. Introduction

Rings in which every element is the product of a unit and an idempotent are
said to be unit reqular. Recall that an element of a ring R is clean if it is the
sum of an idempotent and a unit, and R is clean if every element of R is clean
(see [12]). Clean rings were introduced by Nicholson in relation to exchange
rings and have been extensively studied since then. Recently, Wang et al. [16]
showed that unit regular rings have idempotent stable range one (i.e., whenever
aR + bR = R with a,b € R, there exists e = e € R such that a + be € U(R),
written isr(R) = 1 for short), and rings with isr(R) = 1 are clean. In 1999,
Nicholson [13] called an element of a ring R strongly clean if it is the sum of a
unit and an idempotent that commute with each other, and R is strongly clean
if each of its elements is strongly clean. Clearly, a strongly clean ring is clean,
and the converse holds for an abelian ring (that is, all idempotents in the ring
are central). Local rings and strongly m-regular rings are well-known examples
of strongly clean rings.

A ring R is a #-ring (or ring with involution) if there exists an operation
* : R — R such that for all z, y € R

(+y) =2"+y", (zy)" =y*z", and ()" ==
An element p of a *-ring is a projection if p> = p = p*. Obviously, 0 and 1 are
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projections of any #-ring. A x-ring R is *-reqular [2] if for every = in R there
exists a projection p such that xR = pR. Following Vas [15], an element of a
x-ring R is (strongly) *-clean if it can be expressed as the sum of a unit and a
projection (that commute), and R is (strongly) x-clean if all of its elements are
(strongly) #-clean. Clearly, #-clean rings are clean and strongly x-clean rings
are strongly clean. It was shown in [7, 11] that there exists a clean *-ring but
not x-clean, and unit regular *-regular rings (which called *-unit regular rings
in [7]) need not be strongly *-clean, which answered two questions raised by
Vas in [15].

In this note, we continue the study of (strongly) *-clean rings. In Section 2,
several basic properties of (strongly) *-clean rings are investigated. Motivated
by the close relationship between strong w-regularity and strong cleanness, we
introduce the concept of strongly m-*-regular rings in Section 3. The structure
of strongly m-x-regular rings is considered and some properties of extensions
are discussed. As we know, it is still an open question that whether a strongly
clean ring has idempotent stable range one, or even has stable range one (see
[13]). In Section 4, we extend isr(R) = 1 to the *-version. We call a *-ring
R have projection stable range one (written psr(R) = 1) if, for any a,b € R,
aR+ bR = R implies that a + bp is a unit of R for some projection p € R. It is
shown that if R is strongly #-clean, then psr(R) = 1, and if psr(R) = 1, then R
is *-clean. Furthermore, several equivalent conditions among (strongly) clean
rings, (strongly) *-clean rings and *-rings with projection (idempotent) stable
range one are obtained.

Throughout this paper, rings are associative with unity. Let R be a ring.
The set of all idempotents, all nilpotents and all units of R are denoted by
Id(R), R*! and U(R), respectively. For a € R, the commutant of a is denoted
by comm(a) = {z € R : ax = za}. We write M, (R) for the ring of all n x n
matrices over R whose identity element we write as I,,. Let Z,, be the ring of
integers modulo n. For a *-ring R, the symbol P(R) stands for the set of all
projections of R.

2. x-clean rings

In this section, some basic properties of x-clean rings are discussed, and
several examples related to *-cleanness are given.

Example 2.1. (1) Units, elements in J(R) and nilpotents of a x-ring R are
x-clean.
(2) Idempotents of a *-regular rings are *-clean.

Proof. (1) It is obvious.

(2) Let R be x-regular and e € Id(R). Then there exists a projection p such
that (1 —e)R = pR. So we have 1 —e = p(1 —¢) and p = (1 — e)p, and hence
ep = 0. Note that (e—p)(e—p) =e—ep—pe+p=e+p(l—e)=e+(1—e) = 1.
Soe—peU(R), and e = p+ (e — p) is *-clean in R. O
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By Example 2.1, every local ring with involution x is *-clean. In [15], Vas
asked whether there is an example of a *-ring that is clean but not x-clean.
It was answered affirmatively in [7] and [11]. In fact, one can construct some
counterexamples based on the following.

Example 2.2. Let R be a boolean #-ring. Then R is *-clean if and only if
* = 1p is the identity map of R. In particular, R = Zy ®Zy with (a,b)* = (b, a)
is clean but not *-clean.

Proof. Note that every boolean ring is clean. Suppose that R is *-clean. Given
any a € R. Then —a=p+u=p+1=p—1 for some p € P(R). So we have
a=1—pé€ P(R). Thus, a* = a, which implies * = 1. Conversely, if * = 1g,
then every idempotent of R is a projection. Thus, R is *-clean. O

Lemma 2.3. Let R be a x-ring. If2 € U(R), then for anyu? =1, u* =u € R
if and only if every idempotent of R is a projection.

Proof. (=) Let e € Id(R). Then (1 — 2¢)? = 1. So we have 2e = 2¢*, and thus
2(e —e*) = 0. Since 2 € U(R), e = e*. As desired.

(<) Given u € R with u? = 1. Then %L € Id(R) since (441)? = v 42utl —
“Tl. Since every idempotent of R is a projection, it follows from (“Tl)* =l
that u* = u. O

The #-ring R = Zs @ Z- in Example 2.2 reveals that “2 € U(R)” in Lemma
2.3 cannot be removed.

Corollary 2.4. Let R be a x-ring with 2 € U(R). The following are equivalent:
(1) R is clean and every unit of R is self-adjoint (i.e., u* = u for every
u € U(R)).
(2) R is x-clean and * = 1g.

Proof. (2) = (1) is trivial.

(1) = (2). Let a € R. Then a = e + u for some e € Id(R) and u € U(R).
Note that (1 — 2e)? = 1. By Lemma 2.3, e* = e. Thus a € R is #-clean and
a* = a, and so x = 1p. O

Recall that an element ¢ of a *-ring R is self-adjoint square root of 1if t2 =1
and t* =t.

Theorem 2.5. Let R be a *-ring, the following are equivalent:

(1) R is x-clean and 2 € U(R).
(2) Every element of R is a sum of a unit and a self-adjoint square root of
1.

Proof. (1) = (2). Let a € R. Then % = p + u for some p € P(R) and
u € U(R). It follows that a = (2p—1)+2u where (2p—1)* = 2p—1, (2p—1)? =1
and 2u € U(R).

(2) = (1). We first show that 2 € U(R). By hypothesis, 1 =  + v with
22 = 1 and v € U(R). So we have (1 —v)? = 22 = 1, which implies that
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v? = 2v. Since v is a unit, v = 2 € U(R). Given any a € R, then there exist
y,w € R satisfying 2a — 1 = y +w with y* =y, y> =1 and w € U(R). Thus,
a = %1 4+ % is a xclean expression since (¥E1)* = L (£EH1)2 = 2L and
w

2 e U(R).

Camillo and Yu [5] showed that if R is a ring in which 2 is a unit, then R
is clean if and only if every element of R is the sum of a unit and a square
root of 1. Indeed, by the proof of Theorem 2.5, the condition 2 € U(R) is also
necessary.

Proposition 2.6. The following are equivalent for a x-ring R :

(1) R is x-clean and 0,1 are the only projections.
(2) R is clean ring and 0,1 are the only idempotents.
(3) R is a local ring.

Proof. (2) = (3) follows from [14, Lemma 14] and (3) = (1) follows by Example
2.1.

(1) = (2). It suffices to show that the only idempotents in R are 0 and 1.
For €2 = e € R, the hypothesis implies that e = p+u where p € P(R) = {0,1}
and v € U(R). If p = 0, then e = w is a unit, so e = 1. If p = 1, then
1—e=—u€U(R), and hence e = 0. As required. O

Let I be an ideal of a *-ring R. We call I is s-invariant if I* C I. In this
case, the involution * of R can be extended to the factor ring R/I, which is
still denoted by .

Lemma 2.7. Let R be x-clean. If I is a x-invariant ideal of R, then R/I is
x-clean. In particular, R/J(R) is x-clean.

Proof. Since the homomorphism image of a projection (resp., unit) is also a
projection (resp., unit), the result follows.

Next we only need to prove that J(R) is x-invariant. For any a* € (J(R))",
we show that a* € J(R). Note that a € J(R). Take any x € R. Then 1 —z*a €
U(R). Thus 1 — a*x = (1 — 2*a)* is a unit of R, as desired. O

Let R be a x-ring. Then #* induces an involution of the power series ring
R|[[z]], denoted by x, where (> .2 a;z’)* = > .2 ala’.
Proposition 2.8. Let R be a x-ring. Then R[[z]] is x-clean if and only if R
s *-clean.

Proof. Suppose that R[[z]] is #-clean. Note that R 2 R[[z]]/(x) and (z) is a *-
invariant ideal of R[[z]]. By Lemma 2.7, R is *-clean. Conversely, assume that
R is x-clean. Let f(z) = Y 0, a;z’ € R[[z]]. Write ag = p + u with p € P(R)
and u € U(R). Then f(z) =p+ (u+ Y 5oy a;z"), where p € P(R) C P(R[[z]])
and u+ Yo, a;z* € U(R|[[z]]). Hence f(z) is *-clean in R[[z]]. O

According to [14, Proposition 13], the polynomial ring R[z] is never clean.
Hence, R[] is not #-clean for any involution x.
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3. Strongly w-x-regular rings

Strong m-regularity is closely related to strong cleanness. In this section,
we introduce the notion of strongly m-*-regular rings which can be viewed as
x-versions of strongly 7-regular rings. The structure and properties of strongly
m-x-regular rings are given.

Lemma 3.1 ([11, Lemma 2.1]). Let R be a *-ring. If every idempotent of R
is a projection, then R is abelian.

Due to [7], an element a of a x-ring R is strongly x-regular if a = pu = up
with p € P(R) and u € U(R); R is strongly x-reqular if each of its elements is
strongly x-regular. By [7, Proposition 2.8], any strongly #-regular element is
strongly *-clean.

Theorem 3.2. Let R be a x-ring. Then the following are equivalent for a € R :

(1) There exist e € P(R), u € U(R) and an integer m > 1 such that
a™ = eu and a,e,u commute with each other.
(2) There exist f € P(R), v € U(R) such that a = f 4+ v, fo = vf and

af € RML

(3) There exists p € P(R) such that p € comm(a), ap € U(pRp) and
a(l —p) € R

(4) There exists b € comm(a) such that (ab)* = ab, b= bab and a — a®b €
Rnil.

Proof. (1) = (2). Write f =1 —e. Clearly, f € P(R) and o™ — f € U(R) with
the inverse u=le — f. From af = fa, we have a — f := v is a unit of R (since
(a—f)l@™ P +am2f+--+af+f)=a™— feU(R)) and fv =vf. It is
clear that (af)™ =a™f = 0.

(2) = (3). Set p=1—f. Then p € P(R), ap = pa = vp € U(pRp) and
a(l —p) =af € RHL

(3) = (4). By (3), aw = wa = p for some w € U(pRp). So we obtain
[a—(1-p)l[w—(1—-p)] =1-a(l—p) € U(R) since a(1 —p) is nilpotent, which
implies that a — (1 —p) € U(R). Let b = [a — (1 — p)]"!p. Then b € comm(a),
bp=>band ab=[a— (1 —p)]b=p € P(R). Thus (ab)* = ab, b = bp = bab and
a—a%b=a(l —ab) =a(l —p) € R

(4) = (1). Let e = ab. Then (ab)* = ab implies e* = e, and bab = b yields
e? =e. Soe € P(R). As a—a*b € R g™ = a™e for some integer m > 1.
Take u = a™ + (1 —e) and v’ = b™e + (1 — e). Then wu’ = v'u = 1. Hence,
u € U(R) and a™ = a™e = ue with a, e, u commuting with each other. O

Recall that an element a of a ring R is strongly m-regular if a™ € a® 'R N
Ra™*! for some n > 1 (equivalently, a” = eu with e € Id(R), u € U(R) and
a, e, u all commute [13]); R is strongly m-regular if every element of R is strongly
m-regular. Based on the above, we introduce the following concept.
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Definition 3.3. Let R be a #-ring. An element a € R is called strongly
m-+-regular if it satisfies the conditions in Theorem 3.2; R is called strongly
m-+-regular if every element of R is strongly m-*-regular.

Corollary 3.4. Any strongly *-reqular element is strongly w-x-regular, and any
strongly m-x-reqular element is strongly x-clean.

Example 3.5. (1) Let R = Z4 and * = 1g. Then R is strongly m-*-regular.
However, 2 € R is not strongly *-regular.

(2) Let R be a local domain with involution * and J(R) # 0. Note that
P(R) = Id(R) = {0,1}. So R is strongly *-clean by Proposition 2.6, but any
power of a nonzero element in J(R) can not expressed as the product of a
projection and a unit.

Recall that a ring R is w-regular if for any a € R, there exist n > 1 and
b € R such that a” = a™ba™. Strongly m-regular rings and regular rings are
m-regular (see [13]). A ring R is directly finite if ab = 1 implies ba = 1 for all
a,b € R. Abelian rings are directly finite.

Theorem 3.6. The following are equivalent for a x-ring R :

(1) R is strongly mw-x-reqular.

(2) R is w-regular and every idempotent of R is a projection.

(3) For any a € R, there exist n > 1 and p € P(R) such that a"R = pR,
and R is abelian.

(4) For any a € R, there exists n > 1 such that a™ is strongly x-regular.

(5) For any a € R, there exist p € P(R) and u € U(R) such that a = p+u,
ap € R™Y; and v~1qu is a projection for allv € U(R) and all ¢ € P(R).

Proof. (1) = (2). Note that every strongly m-k-regular ring is strongly -
regular and strongly #-clean. Thus R is a w-regular ring. By [11, Theorem 2.2],
every idempotent of R is a projection.

(2) = (3). For any a € R, there exists n > 1 such that o = a"xza™ for
some x € R. Write a"x = p. Then p € P(R) and a™ = pa™. It is clear that
a"™R = pR. In view of Lemma 3.1, R is abelian.

(3) = (4). Let e € Id(R). Then eR = pR for some p € P(R). Since R is
abelian, we have e = pe = ep = p. Thus, every idempotent of R is a projection.
Given a € R, there exist n > 1 and ¢ € P(R) such that a" R = ¢R. So one gets
a™ = qa™ and ¢ = a"z for some z € R, which implies a” = a”za™. Next we
show that a™ — (1 — ¢) is invertible. Note that [a" — (1 — ¢)][zg — (1 — ¢)] = 1.
Then a™ — (1 — q) := u € U(R) since R is directly finite. Multiplying the
equation a™ — (1 — q) = u by p yields a™ = a™q = ug = qu, which implies that
a™ is strongly *-regular.

(4) = (5). For e € Id(R), e = qu = vq for some ¢ € P(R) and v € U(R)
by the assumption. Then e = quv = €2 = qv?, and so we obtain ¢ = qu = e,
which implies that every idempotent of R is a projection. Clearly, v"'quv is a
projection for all v € U(R) and all ¢ € P(R). Given a € R as in (4), a™ =
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(1 —p)w = w(l —p) for some p € P(R) and w € U(R). Note that R is abelian.
So we have a"p = (ap)” = 0 and (a — p)[a"'w™ (1 —p) = I a’p] =1, and
hence a — p € U(R) as R is directly finite.

(5) = (1). By (5), every element of R is *-clean. In view of [11, Theorem
2.2], R is abelian. Thus R is strongly m--regular by Theorem 3.2(2). O

Corollary 3.7. Let R be a x-ring. The following are equivalent:
(1) R is strongly w-x-reqular.
(2) R/J(R) is strongly m-x-regular with J(R) nil, every projection of R is
central and every projection of R/J(R) is lifted to a projection of R.
(3) R/J(R) is strongly *-reqular with J(R) nil, and every idempotent of
R/J(R) is lifted to a central projection of R.

Proof. Write R = R/J(R). By Lemma 2.7, R is a -ring.

(1) = (2). Clearly, R is strongly m-*regular. As R is strongly 7-regular,
for any a € J(R), there exist m > 1, e € Id(R) and u € U(R) such that
e=amu € J(R). So a™ = eu~! = 0, which implies that J(R) is nil. Note that
R is strongly *-clean. So the rest follows from [11, Corollary 2.11].

(2) = (3). By virtue of [11, Corollar 2.11], R is reduced (i.e., B = 0), and
every idempotent of R is lifted to a central projection of R. So we only need to
prove that R is strongly *-regular. Given any z € R. By Theorem 3.2, there
exist p € P(R) and v € U(R) such that a = p + v, vp = pv and ap € R =o.
It follows that a = a(1 — p) = v(1 — p) = (1 — p)v is strongly *-regular in R.

(3) = (1). Since R is strongly regular, it is reduced clean. By [11, Corollary
2.11], every idempotent of R is a projection. Note that J(R) is nil and R is
m-regular. So R is m-regular by [1, Theorem 4]. In view of Theorem 3.6, R is
strongly m-*-regular. ]

Corollary 3.8. Let R be a *-ring. Then R is strongly *-clean and m-reqular
if and only if R is strongly m-x-reqular.

Proof. If R is strongly x-clean and 7-regular, by [11, Theorem 2.2], idempotents
of R are projections. So R is strongly m-x-regular by Theorem 3.6. The other
direction is clear. O

For a -ring R, the matrix ring M, (R) has a natural involution inherited
from R : if A = (a;;) € M,,(R), A* is the transpose of (a;) (i.e., A* = (aj;)" =
(a};)). Henceforth we consider M,(R) as a *-ring with respect to this natural
involution.

Corollary 3.9. Let R be a x-ring. Then M, (R) is not strongly 7-x-regqular for
any n > 2.

Let R be a #-ring and S = pRp with p € P(R). Then the restriction of * on
S will be an involution of S, which is also denoted by x*.

Corollary 3.10. If R is strongly m-+-regular, then so is eRe for any e € Id(R).
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Proof. Let S = eRe with e € Id(R). By hypothesis, e is a projection of R. So
S is a *-ring. It is well known that S is strongly 7-regular (see also [4, Lemma
39]). Clearly, every idempotent of S (C R) is a projection. So the result follows
by Theorem 3.6. O

Let RG be the group ring of a group G over a ring R. According to [11,
Lemma 2.12], the map * : RG — RG given by (3_ az9)" =>_, arg™! is an
involution of RG, and is denoted by * again.

Corollary 3.11. Let R be a *-ring with artinian prime factors, 2 € J(R) and
G be a locally finite 2-group. Then R is strongly w-x-regular if and only if RG
is strongly w-x-reqular.

Proof. Assume that R is strongly m-*-regular. Then Id(R) = P(R). In partic-
ular, R is abelian. So idempotents of R coincide with idempotents in RG by
[8, Lemma 11], and hence every idempotent of RG is a projection. Since R is
a ring with artinian prime factors and G is a locally finite 2-group, RG is a
strongly m-regular ring by [10, Theorem 3.3]. In view of Theorem 3.6, RG is
strongly m-*-regular.

Conversely, R is strongly m-regular by [10, Proposition 3.4]. Note that
Id(R) C Id(RG) and all idempotents of RG are projections. By Theorem
3.6, R is strongly m-x-regular. O

Let C be the complex filed. It is well known that for any n > 1, the matrix
ring M, (C) is strongly m-regular. However, M,,(C) is not strongly m-*-regular
whenever n > 2 by Corollary 3.9. So it is interesting to determine when a
matrix of M, (C) is strongly m-*-regular. The set of all n x 1 matrices over C
is denoted by C™.

Example 3.12. Let S = M, (C) with * the transpose operation. Then A
is strongly m-x-regular if and only if there exist ey, ea,...,e, € C™ such that
efe;=0fori=1,...,r; j=r+1,...,n,and A = P(§ )P~ with P =
(e1,€2,...,e,) € U(S), C € UM,.(C)) and N € [M,,_.(C)]*!. In particular,

any real symmetric matrix is strongly m-*-regular.

Proof. Given A € S. Assume that rank(A) = r. By the Jordan canonical
decomposition, there exists P = (e, e, ...,e,) € U(S) such that

_ L (C 0\
aer(C 2)r

where e; € C" for all i, C € U(M,(C)) and N € [M,,_.(C)]*!. Write

(7 0\
BP<O 0>P.

Then one easily gets that BA= AB, B=BAB and A— A?2B=P(§})P!
is nilpotent. Note that B satisfies the above conditions is unique (see [3]). In
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view of Theorem 3.2, A is strongly m--regular if and only if (AB)* = AB.
Notice that AB = P (% ) P~* and

(AB)* = AB
e P (5P =Pr(50
e (PP (55) PPy = (%
& (G0) (P P)=(PP)(§q)
& P*P = ('} ) with Vi € U(M,(C)) and V3 € U(M,_(C))
<efej=0forallie{1,2,...,r}, je{r+1,r+2,...,n},

P_l
0
0

)

where

Vi=(ef,eh,....e)(er,ea,...,e);
L I O e Y
If A € S is a real symmetric matrix, then there exists an orthogonal matrix P
(i.e., P~ = PT = P*) such that A= P (% 5) P~'. So the result follows. [

In view of [2, Proposition 3], the involution of a #-regular ring R is proper
(i.e., *z = 0 implies that = 0 for all z € R).

Remark 3.13. If R is strongly m-*-regular, then for any x € R, z*x = 0 implies
r € R™L Indeed, by Theorem 3.2, there exist p € P(R) and u € U(R) such
that 2™ = pu = up for some m > 1. Then 0 = (z*)™a™ = (2™)*2™ = u*pu,
and thus p = 0, whence 2™ = 0.

4. Stable range conditions

In [13], Nicholson asked whether every strongly clean ring has stable range
one, and it is still open. Recall that a ring R is said to have idempotent stable
range one (written isr(R)=1) provided that for any a, b € R, aR+ bR = R
implies that a +be € U(R) for some e € Id(R) (see [6, 16]). If e is an arbitrary
element of R (not necessary an idempotent), then R is said to have stable range
one. Clearly, if isr(R) = 1, then R is clean and has stable range one. We extend
the notion of isr(R) = 1 to *-versions.

Definition 4.1. A x-ring R is said to have projection stable range one (written

pst(R) = 1) if for any a, b € R, aR + bR = R implies there exists p € P(R)
such that a + bp € U(R).

The following result is motivated by [6, Proposition 2].

Proposition 4.2. Let R be a *-ring. The following are equivalent:
(1) psr(R) =1.
(2) For any a, b € R, aR + bR = R implies there exists p € P(R) such
that a + bp is right invertible.
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(3) For any a, b € R, aR + bR = R implies there exists p € P(R) such
that a + bp is left invertible.

Proof. The proof is similar to that of [6, Proposition 2].

(1) = (2) is clear.

(2) = (3). Let a, b € R with aR+bR = R. Then there is a projection p € R
such that a + bp = u is right invertible. Assume that uw = 1 for some w € R.
Then wR + (1 — wu)R = R. So the hypothesis implies there exists ¢ € P(R)
such that w + (1 — wu)q is right invertible. Note that u[w + (1 — wu)q] = 1.
Thus w + (1 — wu)q is also left invertible, and hence invertible. This implies
that u € U(R).

(3) = (1). Given any a,b € R with aR+bR = R. Then there exists p € P(R)
such that a + bp is left invertible. We may let v € R with v(a + bp) = 1. Then
vR + 0R = R. By hypothesis, we can find a projection ¢ such that v + 0¢g = v
is left invertible. So v is a unit, which implies that a + bp € U(R). Therefore,
psr(R) = 1. O

For a #-ring R, it is clear that if psr(R) = 1, then isr(R) = 1. However, there
exists a *-ring with isr(R) = 1 but not satisfies psr(R) = 1.

Example 4.3. Define the involution of Zs by * :  — x. Let S = Ma(Z2).
Then S is a *-ring. In view of [16, Corollary 3.4], isr(S) = 1 since S is unit
regular. Notice that P(S) = {0, I, ($8),(39)}, and (39)S+ (§9)S = S.
However, (§3)+(99) P is not invertible for any P € P(S). Hence, psr(S) # 1.

From Example 4.3, one can also find that the projection stable range one
property cannot be inherited to the matrix ring.

Proposition 4.4. Let R be a x-ring. If pst(R) =1, then R is x-clean.

Proof. For any a € R, the equation aR+ (—1)R = R implies that a4+ (—1)p =
u € U(R) for some p € P(R). So a = p + u, and hence R is *-clean. O

According to [15, Proposition 4], the ring in Example 4.3 is x-clean. So we
conclude that the converse of Proposition 4.4 is not true.

Following Nicholson [12], a ring R is exchange if for every a € R, there exists
e? = e € aR such that 1 —e € (1 —a)R. Clean rings are exchange, the converse
holds whenever the rings are abelian. A x-ring R is called x-abelian if every
projection of R is central [15].

Theorem 4.5. Let R be a *-ring. The following are equivalent:
(1) psr(R) =1 and R is x-abelian.
(2) For any a, b € R, aR + bR = R implies there exists a projection
p € comm(a) such that a + bp € U(R).
(3) isr(R) = 1 and every idempotent of R is a projection.
(4) R is clean (or exchange) and every idempotent of R is a projection.
(5) R is x-clean and *-abelian.
(6) R is strongly -clean.
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(7) For every a € R, there exists a projection p € aR such that 1 —p €
(1-a)R.

Proof. (1) = (2) and (3) = (4) are clear; (4) = (5) = (6) = (7) follows from
[11, Theorem 2.2].

(2) = (3). We only need to show that all idempotents are projections. Let
e € Id(R). Then eR + (—1)R = R. So there exists p € P(R) such that ep = pe
and e —p € U(R). Note that (e —p)(1 —e —p) = (1 —e—p)(e — p) = 0. Thus,
e =1—p € P(R). Therefore, every idempotent of R is a projection.

(7) = (1). Let e € Id(R). Then there exists a projection p € eR such that
1—pe(l—e)R.Soweobtainp =epand 1 —p= (1—e)(1—p). It follows that
e = p, and thus Id(R) = P(R). In view of Lemma 3.1, R is abelian. Note that
R is exchange. Then by [6, Theorem 12], isr(R) = 1, and hence psr(R) = 1. O

It is still unknown that whether strongly clean rings have stable range one
([13]). However, we have an affirmative answer of their *-versions.

Corollary 4.6. If R is a strongly x-clean ring, then psr(R) = 1.

The following example will reveal that the converse of Corollary 4.6 does
not hold.

Example 4.7. Let S = My(Z3). The involution of S is defined by A — A*,
where A* is the transpose of A € S. Then S is not strongly x-clean by [7,
Theorem 2.3]. Since S is unit regular, isr(S) = 1 by [16, Corollary 3.4]. In
view of [9, Lemma 7], we have

1d(S) ={0, I, (7 ,Y,) with yz =z — 22},
and
P(S) ={0.12,(58).(89).(33),(33)}
We next prove that psr(S) = 1. Assume on the contrary. Then there exist
A= (2%) and A’ = (‘Z: Z//) with AS 4+ A’S = S but A+ A’P is not a unit for
any P € P(S). That is,
det(A+ A'P) =0.
This implies the following system of equations:
ad —bc=0 (i), ad —b'c=0 (ii),
a'd—bcd =0 (iii), add —bd =0 (iv),
ac’ —ad'c=bd —b'd  (v).
On the other hand, as isr(S) = 1, there exists E € Id(S) \ P(S) such that
A+ A'E € U(S). Then E must be of the form (7 ¥, ) where yz = — 22. By
Egs. (i)-(iv), we obtain
det(A+ A'E) = (ac’ — d’c)y — (bd' — b'd)z.
Next we show that ac’ — a’c = bd' — b'd = 0.
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Case 1. ¢ # 0. Multiplying Eq. (v) by ¢ and by substituting b'c = ad’, we
have (ac’ — d’c)e = bd'c — b'dec = (bc — ad)d’ = 0 by Eq. (i). Thus, a¢’ —a’c =
bd' —b'd = 0.

Case 2. d # 0. Multiplying Eq. (v) by d and by substituting a'd = bc’, we
have (bd' — b'd)d = ac’d — d’e¢d = (ad — be)d = 0 by Eq. (i). So ad —ad'c =
bd' —b'd = 0.

Case 3. ¢ = d = 0. From Egs. (ii) and (iii), we get ad’ = b’ = 0. If
b # 0, then ¢/ = 0, it follows that ac’ —a’c = 0. If a # 0, then d’ = 0, and so
bd' —b'd =0. Thus ac’ —a'c =bd' —b'd = 0.

Therefore, det(A+ A’E) = (ac’ —a’c)y — (bd’ —b'd)z = 0 for any case, which
contradicts A + A’E € U(S). Hence, psr(R) = 1.

By Theorem 4.5, we have the following result immediately.

Corollary 4.8. Let R be a x-ring. If Id(R) = P(R), then the following are
equivalent:

(1) R is (strongly) clean.
(2) R is exchange.

(3) R is (strongly) *-clean.
(4) isr(R) = 1.

(5) psr(R) =1.
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