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A NOTE ON STRONGLY ∗-CLEAN RINGS

Jian Cui and Zhou Wang

Abstract. A ∗-ring R is called (strongly) ∗-clean if every element of R is
the sum of a projection and a unit (which commute with each other). In
this note, some properties of ∗-clean rings are considered. In particular, a
new class of ∗-clean rings which called strongly π-∗-regular are introduced.
It is shown that R is strongly π-∗-regular if and only if R is π-regular and
every idempotent of R is a projection if and only if R/J(R) is strongly
regular with J(R) nil, and every idempotent of R/J(R) is lifted to a
central projection of R. In addition, the stable range conditions of ∗-clean
rings are discussed, and equivalent conditions among ∗-rings related to
∗-cleanness are obtained.

1. Introduction

Rings in which every element is the product of a unit and an idempotent are
said to be unit regular. Recall that an element of a ring R is clean if it is the
sum of an idempotent and a unit, and R is clean if every element of R is clean
(see [12]). Clean rings were introduced by Nicholson in relation to exchange
rings and have been extensively studied since then. Recently, Wang et al. [16]
showed that unit regular rings have idempotent stable range one (i.e., whenever
aR + bR = R with a, b ∈ R, there exists e2 = e ∈ R such that a+ be ∈ U(R),
written isr(R) = 1 for short), and rings with isr(R) = 1 are clean. In 1999,
Nicholson [13] called an element of a ring R strongly clean if it is the sum of a
unit and an idempotent that commute with each other, and R is strongly clean

if each of its elements is strongly clean. Clearly, a strongly clean ring is clean,
and the converse holds for an abelian ring (that is, all idempotents in the ring
are central). Local rings and strongly π-regular rings are well-known examples
of strongly clean rings.

A ring R is a ∗-ring (or ring with involution) if there exists an operation
∗ : R → R such that for all x, y ∈ R

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, and (x∗)∗ = x.
An element p of a ∗-ring is a projection if p2 = p = p∗. Obviously, 0 and 1 are
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projections of any ∗-ring. A ∗-ring R is ∗-regular [2] if for every x in R there
exists a projection p such that xR = pR. Following Vaš [15], an element of a
∗-ring R is (strongly) ∗-clean if it can be expressed as the sum of a unit and a
projection (that commute), and R is (strongly) ∗-clean if all of its elements are
(strongly) ∗-clean. Clearly, ∗-clean rings are clean and strongly ∗-clean rings
are strongly clean. It was shown in [7, 11] that there exists a clean ∗-ring but
not ∗-clean, and unit regular ∗-regular rings (which called ∗-unit regular rings
in [7]) need not be strongly ∗-clean, which answered two questions raised by
Vaš in [15].

In this note, we continue the study of (strongly) ∗-clean rings. In Section 2,
several basic properties of (strongly) ∗-clean rings are investigated. Motivated
by the close relationship between strong π-regularity and strong cleanness, we
introduce the concept of strongly π-∗-regular rings in Section 3. The structure
of strongly π-∗-regular rings is considered and some properties of extensions
are discussed. As we know, it is still an open question that whether a strongly
clean ring has idempotent stable range one, or even has stable range one (see
[13]). In Section 4, we extend isr(R) = 1 to the ∗-version. We call a ∗-ring
R have projection stable range one (written psr(R) = 1) if, for any a, b ∈ R,
aR+ bR = R implies that a+ bp is a unit of R for some projection p ∈ R. It is
shown that if R is strongly ∗-clean, then psr(R) = 1, and if psr(R) = 1, then R
is ∗-clean. Furthermore, several equivalent conditions among (strongly) clean
rings, (strongly) ∗-clean rings and ∗-rings with projection (idempotent) stable
range one are obtained.

Throughout this paper, rings are associative with unity. Let R be a ring.
The set of all idempotents, all nilpotents and all units of R are denoted by
Id(R), Rnil and U(R), respectively. For a ∈ R, the commutant of a is denoted
by comm(a) = {x ∈ R : ax = xa}. We write Mn(R) for the ring of all n × n
matrices over R whose identity element we write as In. Let Zn be the ring of
integers modulo n. For a ∗-ring R, the symbol P (R) stands for the set of all
projections of R.

2. ∗-clean rings

In this section, some basic properties of ∗-clean rings are discussed, and
several examples related to ∗-cleanness are given.

Example 2.1. (1) Units, elements in J(R) and nilpotents of a ∗-ring R are
∗-clean.

(2) Idempotents of a ∗-regular rings are ∗-clean.

Proof. (1) It is obvious.
(2) Let R be ∗-regular and e ∈ Id(R). Then there exists a projection p such

that (1 − e)R = pR. So we have 1 − e = p(1 − e) and p = (1 − e)p, and hence
ep = 0. Note that (e−p)(e−p) = e−ep−pe+p= e+p(1−e) = e+(1−e) = 1.
So e− p ∈ U(R), and e = p+ (e − p) is ∗-clean in R. �
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By Example 2.1, every local ring with involution ∗ is ∗-clean. In [15], Vaš
asked whether there is an example of a ∗-ring that is clean but not ∗-clean.
It was answered affirmatively in [7] and [11]. In fact, one can construct some
counterexamples based on the following.

Example 2.2. Let R be a boolean ∗-ring. Then R is ∗-clean if and only if
∗ = 1R is the identity map of R. In particular, R = Z2⊕Z2 with (a, b)∗ = (b, a)
is clean but not ∗-clean.

Proof. Note that every boolean ring is clean. Suppose that R is ∗-clean. Given
any a ∈ R. Then −a = p+ u = p+ 1 = p− 1 for some p ∈ P (R). So we have
a = 1− p ∈ P (R). Thus, a∗ = a, which implies ∗ = 1R. Conversely, if ∗ = 1R,
then every idempotent of R is a projection. Thus, R is ∗-clean. �

Lemma 2.3. Let R be a ∗-ring. If 2 ∈ U(R), then for any u2 = 1, u∗ = u ∈ R
if and only if every idempotent of R is a projection.

Proof. (⇒) Let e ∈ Id(R). Then (1− 2e)2 = 1. So we have 2e = 2e∗, and thus
2(e− e∗) = 0. Since 2 ∈ U(R), e = e∗. As desired.

(⇐) Given u ∈ R with u2 = 1. Then u+1

2
∈ Id(R) since (u+1

2
)2 = u2

+2u+1

4
=

u+1

2
. Since every idempotent of R is a projection, it follows from (u+1

2
)∗ = u+1

2

that u∗ = u. �

The ∗-ring R = Z2 ⊕ Z2 in Example 2.2 reveals that “2 ∈ U(R)” in Lemma
2.3 cannot be removed.

Corollary 2.4. Let R be a ∗-ring with 2 ∈ U(R). The following are equivalent:

(1) R is clean and every unit of R is self-adjoint (i.e., u∗ = u for every

u ∈ U(R)).
(2) R is ∗-clean and ∗ = 1R.

Proof. (2) ⇒ (1) is trivial.
(1) ⇒ (2). Let a ∈ R. Then a = e + u for some e ∈ Id(R) and u ∈ U(R).

Note that (1 − 2e)2 = 1. By Lemma 2.3, e∗ = e. Thus a ∈ R is ∗-clean and
a∗ = a, and so ∗ = 1R. �

Recall that an element t of a ∗-ring R is self-adjoint square root of 1 if t2 = 1
and t∗ = t.

Theorem 2.5. Let R be a ∗-ring, the following are equivalent:

(1) R is ∗-clean and 2 ∈ U(R).
(2) Every element of R is a sum of a unit and a self-adjoint square root of

1.

Proof. (1) ⇒ (2). Let a ∈ R. Then 1+a
2

= p + u for some p ∈ P (R) and

u ∈ U(R). It follows that a = (2p−1)+2u where (2p−1)∗ = 2p−1, (2p−1)2 = 1
and 2u ∈ U(R).

(2) ⇒ (1). We first show that 2 ∈ U(R). By hypothesis, 1 = x + v with
x2 = 1 and v ∈ U(R). So we have (1 − v)2 = x2 = 1, which implies that
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v2 = 2v. Since v is a unit, v = 2 ∈ U(R). Given any a ∈ R, then there exist
y, w ∈ R satisfying 2a− 1 = y + w with y∗ = y, y2 = 1 and w ∈ U(R). Thus,

a = y+1

2
+ w

2
is a ∗-clean expression since (y+1

2
)∗ = y+1

2
, (y+1

2
)2 = y+1

2
and

w
2
∈ U(R). �

Camillo and Yu [5] showed that if R is a ring in which 2 is a unit, then R
is clean if and only if every element of R is the sum of a unit and a square
root of 1. Indeed, by the proof of Theorem 2.5, the condition 2 ∈ U(R) is also
necessary.

Proposition 2.6. The following are equivalent for a ∗-ring R :

(1) R is ∗-clean and 0, 1 are the only projections.

(2) R is clean ring and 0, 1 are the only idempotents.

(3) R is a local ring.

Proof. (2) ⇒ (3) follows from [14, Lemma 14] and (3) ⇒ (1) follows by Example
2.1.

(1) ⇒ (2). It suffices to show that the only idempotents in R are 0 and 1.
For e2 = e ∈ R, the hypothesis implies that e = p+ u where p ∈ P (R) = {0, 1}
and u ∈ U(R). If p = 0, then e = u is a unit, so e = 1. If p = 1, then
1− e = −u ∈ U(R), and hence e = 0. As required. �

Let I be an ideal of a ∗-ring R. We call I is ∗-invariant if I∗ ⊆ I. In this
case, the involution ∗ of R can be extended to the factor ring R/I, which is
still denoted by ∗.

Lemma 2.7. Let R be ∗-clean. If I is a ∗-invariant ideal of R, then R/I is

∗-clean. In particular, R/J(R) is ∗-clean.

Proof. Since the homomorphism image of a projection (resp., unit) is also a
projection (resp., unit), the result follows.

Next we only need to prove that J(R) is ∗-invariant. For any a∗ ∈ (J(R))∗,
we show that a∗ ∈ J(R). Note that a ∈ J(R). Take any x ∈ R. Then 1−x∗a ∈
U(R). Thus 1− a∗x = (1 − x∗a)∗ is a unit of R, as desired. �

Let R be a ∗-ring. Then ∗ induces an involution of the power series ring
R[[x]], denoted by ∗, where (

∑

∞

i=0
aix

i)∗ =
∑

∞

i=0
a∗i x

i.

Proposition 2.8. Let R be a ∗-ring. Then R[[x]] is ∗-clean if and only if R
is ∗-clean.

Proof. Suppose that R[[x]] is ∗-clean. Note that R ∼= R[[x]]/(x) and (x) is a ∗-
invariant ideal of R[[x]]. By Lemma 2.7, R is ∗-clean. Conversely, assume that
R is ∗-clean. Let f(x) =

∑

∞

i=0
aix

i ∈ R[[x]]. Write a0 = p+ u with p ∈ P (R)
and u ∈ U(R). Then f(x) = p+ (u+

∑

∞

i=1
aix

i), where p ∈ P (R) ⊆ P (R[[x]])
and u+

∑

∞

i=1
aix

i ∈ U(R[[x]]). Hence f(x) is ∗-clean in R[[x]]. �

According to [14, Proposition 13], the polynomial ring R[x] is never clean.
Hence, R[x] is not ∗-clean for any involution ∗.
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3. Strongly π-∗-regular rings

Strong π-regularity is closely related to strong cleanness. In this section,
we introduce the notion of strongly π-∗-regular rings which can be viewed as
∗-versions of strongly π-regular rings. The structure and properties of strongly
π-∗-regular rings are given.

Lemma 3.1 ([11, Lemma 2.1]). Let R be a ∗-ring. If every idempotent of R
is a projection, then R is abelian.

Due to [7], an element a of a ∗-ring R is strongly ∗-regular if a = pu = up
with p ∈ P (R) and u ∈ U(R); R is strongly ∗-regular if each of its elements is
strongly ∗-regular. By [7, Proposition 2.8], any strongly ∗-regular element is
strongly ∗-clean.

Theorem 3.2. Let R be a ∗-ring. Then the following are equivalent for a ∈ R :

(1) There exist e ∈ P (R), u ∈ U(R) and an integer m ≥ 1 such that

am = eu and a, e, u commute with each other.

(2) There exist f ∈ P (R), v ∈ U(R) such that a = f + v, fv = vf and

af ∈ Rnil.
(3) There exists p ∈ P (R) such that p ∈ comm(a), ap ∈ U(pRp) and

a(1− p) ∈ Rnil.
(4) There exists b ∈ comm(a) such that (ab)∗ = ab, b = bab and a− a2b ∈

Rnil.

Proof. (1) ⇒ (2). Write f = 1− e. Clearly, f ∈ P (R) and am − f ∈ U(R) with
the inverse u−1e − f. From af = fa, we have a− f := v is a unit of R (since
(a − f)(am−1 + am−2f + · · · + af + f) = am − f ∈ U(R)) and fv = vf . It is
clear that (af)m = amf = 0.

(2) ⇒ (3). Set p = 1 − f . Then p ∈ P (R), ap = pa = vp ∈ U(pRp) and
a(1− p) = af ∈ Rnil.

(3) ⇒ (4). By (3), aw = wa = p for some w ∈ U(pRp). So we obtain
[a− (1−p)][w− (1−p)] = 1−a(1−p) ∈ U(R) since a(1−p) is nilpotent, which
implies that a− (1 − p) ∈ U(R). Let b = [a− (1 − p)]−1p. Then b ∈ comm(a),
bp = b and ab = [a− (1− p)]b = p ∈ P (R). Thus (ab)∗ = ab, b = bp = bab and
a− a2b = a(1− ab) = a(1 − p) ∈ Rnil.

(4) ⇒ (1). Let e = ab. Then (ab)∗ = ab implies e∗ = e, and bab = b yields
e2 = e. So e ∈ P (R). As a − a2b ∈ Rnil, am = ame for some integer m ≥ 1.
Take u = am + (1 − e) and u′ = bme + (1 − e). Then uu′ = u′u = 1. Hence,
u ∈ U(R) and am = ame = ue with a, e, u commuting with each other. �

Recall that an element a of a ring R is strongly π-regular if an ∈ an+1R ∩
Ran+1 for some n ≥ 1 (equivalently, an = eu with e ∈ Id(R), u ∈ U(R) and
a, e, u all commute [13]); R is strongly π-regular if every element of R is strongly
π-regular. Based on the above, we introduce the following concept.
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Definition 3.3. Let R be a ∗-ring. An element a ∈ R is called strongly
π-∗-regular if it satisfies the conditions in Theorem 3.2; R is called strongly
π-∗-regular if every element of R is strongly π-∗-regular.

Corollary 3.4. Any strongly ∗-regular element is strongly π-∗-regular, and any

strongly π-∗-regular element is strongly ∗-clean.

Example 3.5. (1) Let R = Z4 and ∗ = 1R. Then R is strongly π-∗-regular.
However, 2 ∈ R is not strongly ∗-regular.

(2) Let R be a local domain with involution ∗ and J(R) 6= 0. Note that
P (R) = Id(R) = {0, 1}. So R is strongly ∗-clean by Proposition 2.6, but any
power of a nonzero element in J(R) can not expressed as the product of a
projection and a unit.

Recall that a ring R is π-regular if for any a ∈ R, there exist n ≥ 1 and
b ∈ R such that an = anban. Strongly π-regular rings and regular rings are
π-regular (see [13]). A ring R is directly finite if ab = 1 implies ba = 1 for all
a, b ∈ R. Abelian rings are directly finite.

Theorem 3.6. The following are equivalent for a ∗-ring R :

(1) R is strongly π-∗-regular.
(2) R is π-regular and every idempotent of R is a projection.

(3) For any a ∈ R, there exist n ≥ 1 and p ∈ P (R) such that anR = pR,

and R is abelian.

(4) For any a ∈ R, there exists n ≥ 1 such that an is strongly ∗-regular.
(5) For any a ∈ R, there exist p ∈ P (R) and u ∈ U(R) such that a = p+u,

ap ∈ Rnil; and v−1qv is a projection for all v ∈ U(R) and all q ∈ P (R).

Proof. (1) ⇒ (2). Note that every strongly π-∗-regular ring is strongly π-
regular and strongly ∗-clean. Thus R is a π-regular ring. By [11, Theorem 2.2],
every idempotent of R is a projection.

(2) ⇒ (3). For any a ∈ R, there exists n ≥ 1 such that an = anxan for
some x ∈ R. Write anx = p. Then p ∈ P (R) and an = pan. It is clear that
anR = pR. In view of Lemma 3.1, R is abelian.

(3) ⇒ (4). Let e ∈ Id(R). Then eR = pR for some p ∈ P (R). Since R is
abelian, we have e = pe = ep = p. Thus, every idempotent of R is a projection.
Given a ∈ R, there exist n ≥ 1 and q ∈ P (R) such that anR = qR. So one gets
an = qan and q = anx for some x ∈ R, which implies an = anxan. Next we
show that an − (1− q) is invertible. Note that [an − (1− q)][xq − (1− q)] = 1.
Then an − (1 − q) := u ∈ U(R) since R is directly finite. Multiplying the
equation an − (1− q) = u by p yields an = anq = uq = qu, which implies that
an is strongly ∗-regular.

(4) ⇒ (5). For e ∈ Id(R), e = qv = vq for some q ∈ P (R) and v ∈ U(R)
by the assumption. Then e = qv = e2 = qv2, and so we obtain q = qv = e,
which implies that every idempotent of R is a projection. Clearly, v−1qv is a
projection for all v ∈ U(R) and all q ∈ P (R). Given a ∈ R as in (4), an =
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(1− p)w = w(1− p) for some p ∈ P (R) and w ∈ U(R). Note that R is abelian.
So we have anp = (ap)n = 0 and (a− p)[an−1w−1(1− p)−

∑n

i=0
aip] = 1, and

hence a− p ∈ U(R) as R is directly finite.
(5) ⇒ (1). By (5), every element of R is ∗-clean. In view of [11, Theorem

2.2], R is abelian. Thus R is strongly π-∗-regular by Theorem 3.2(2). �

Corollary 3.7. Let R be a ∗-ring. The following are equivalent:

(1) R is strongly π-∗-regular.
(2) R/J(R) is strongly π-∗-regular with J(R) nil, every projection of R is

central and every projection of R/J(R) is lifted to a projection of R.

(3) R/J(R) is strongly ∗-regular with J(R) nil, and every idempotent of

R/J(R) is lifted to a central projection of R.

Proof. Write R = R/J(R). By Lemma 2.7, R is a ∗-ring.
(1) ⇒ (2). Clearly, R is strongly π-∗-regular. As R is strongly π-regular,

for any a ∈ J(R), there exist m ≥ 1, e ∈ Id(R) and u ∈ U(R) such that
e = amu ∈ J(R). So am = eu−1 = 0, which implies that J(R) is nil. Note that
R is strongly ∗-clean. So the rest follows from [11, Corollary 2.11].

(2) ⇒ (3). By virtue of [11, Corollar 2.11], R is reduced (i.e., R
nil

= 0), and
every idempotent of R is lifted to a central projection of R. So we only need to
prove that R is strongly ∗-regular. Given any x ∈ R. By Theorem 3.2, there

exist p ∈ P (R) and v ∈ U(R) such that a = p+ v, vp = pv and ap ∈ R
nil

= 0.
It follows that a = a(1− p) = v(1− p) = (1− p)v is strongly ∗-regular in R.

(3) ⇒ (1). Since R is strongly regular, it is reduced clean. By [11, Corollary
2.11], every idempotent of R is a projection. Note that J(R) is nil and R is
π-regular. So R is π-regular by [1, Theorem 4]. In view of Theorem 3.6, R is
strongly π-∗-regular. �

Corollary 3.8. Let R be a ∗-ring. Then R is strongly ∗-clean and π-regular
if and only if R is strongly π-∗-regular.

Proof. If R is strongly ∗-clean and π-regular, by [11, Theorem 2.2], idempotents
of R are projections. So R is strongly π-∗-regular by Theorem 3.6. The other
direction is clear. �

For a ∗-ring R, the matrix ring Mn(R) has a natural involution inherited
from R : if A = (aij) ∈ Mn(R), A∗ is the transpose of (a∗ij) (i.e., A

∗ = (a∗ij)
T =

(a∗ji)). Henceforth we consider Mn(R) as a ∗-ring with respect to this natural
involution.

Corollary 3.9. Let R be a ∗-ring. Then Mn(R) is not strongly π-∗-regular for
any n ≥ 2.

Let R be a ∗-ring and S = pRp with p ∈ P (R). Then the restriction of ∗ on
S will be an involution of S, which is also denoted by ∗.

Corollary 3.10. If R is strongly π-∗-regular, then so is eRe for any e ∈ Id(R).



846 JIAN CUI AND ZHOU WANG

Proof. Let S = eRe with e ∈ Id(R). By hypothesis, e is a projection of R. So
S is a ∗-ring. It is well known that S is strongly π-regular (see also [4, Lemma
39]). Clearly, every idempotent of S (⊆ R) is a projection. So the result follows
by Theorem 3.6. �

Let RG be the group ring of a group G over a ring R. According to [11,
Lemma 2.12], the map ∗ : RG → RG given by (

∑

g agg)
∗ =

∑

g a
∗

gg
−1 is an

involution of RG, and is denoted by ∗ again.

Corollary 3.11. Let R be a ∗-ring with artinian prime factors, 2 ∈ J(R) and
G be a locally finite 2-group. Then R is strongly π-∗-regular if and only if RG
is strongly π-∗-regular.

Proof. Assume that R is strongly π-∗-regular. Then Id(R) = P (R). In partic-
ular, R is abelian. So idempotents of R coincide with idempotents in RG by
[8, Lemma 11], and hence every idempotent of RG is a projection. Since R is
a ring with artinian prime factors and G is a locally finite 2-group, RG is a
strongly π-regular ring by [10, Theorem 3.3]. In view of Theorem 3.6, RG is
strongly π-∗-regular.

Conversely, R is strongly π-regular by [10, Proposition 3.4]. Note that
Id(R) ⊆ Id(RG) and all idempotents of RG are projections. By Theorem
3.6, R is strongly π-∗-regular. �

Let C be the complex filed. It is well known that for any n ≥ 1, the matrix
ring Mn(C) is strongly π-regular. However, Mn(C) is not strongly π-∗-regular
whenever n ≥ 2 by Corollary 3.9. So it is interesting to determine when a
matrix of Mn(C) is strongly π-∗-regular. The set of all n× 1 matrices over C
is denoted by Cn.

Example 3.12. Let S = Mn(C) with ∗ the transpose operation. Then A
is strongly π-∗-regular if and only if there exist e1, e2, . . . , en ∈ Cn such that
e∗i ej = 0 for i = 1, . . . , r; j = r + 1, . . . , n, and A = P (C 0

0 N )P−1 with P =

(e1, e2, . . . , en) ∈ U(S), C ∈ U(Mr(C)) and N ∈ [Mn−r(C)]
nil. In particular,

any real symmetric matrix is strongly π-∗-regular.

Proof. Given A ∈ S. Assume that rank(A) = r. By the Jordan canonical
decomposition, there exists P = (e1, e2, . . . , en) ∈ U(S) such that

A = P

(

C 0
0 N

)

P−1,

where ei ∈ Cn for all i, C ∈ U(Mr(C)) and N ∈ [Mn−r(C)]
nil. Write

B = P

(

C−1 0
0 0

)

P−1.

Then one easily gets that BA = AB, B = BAB and A−A2B = P ( 0 0
0 N )P−1

is nilpotent. Note that B satisfies the above conditions is unique (see [3]). In
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view of Theorem 3.2, A is strongly π-∗-regular if and only if (AB)∗ = AB.
Notice that AB = P

(

Ir 0
0 0

)

P−1 and

(AB)∗ = AB

⇔ (P−1)∗
(

Ir 0
0 0

)

P ∗ = P
(

Ir 0
0 0

)

P−1

⇔ (P ∗P )−1
(

Ir 0
0 0

)

(P ∗P ) =
(

Ir 0
0 0

)

⇔
(

Ir 0
0 0

)

(P ∗P ) = (P ∗P )
(

Ir 0
0 0

)

⇔ P ∗P =
(

V1 0

0 V2

)

with V1 ∈ U(Mr(C)) and V2 ∈ U(Mn−r(C))

⇔ e∗i ej = 0 for all i ∈ {1, 2, . . . , r}, j ∈ {r + 1, r + 2, . . . , n},

where

V1 = (e∗1, e
∗

2, . . . , e
∗

r)
T (e1, e2, . . . , er);

V2 = (e∗r+1, e
∗

r+2, . . . , e
∗

n)
T (er+1, er+2, . . . , en).

If A ∈ S is a real symmetric matrix, then there exists an orthogonal matrix P
(i.e., P−1 = PT = P ∗) such that A = P

(

Ir 0
0 0

)

P−1. So the result follows. �

In view of [2, Proposition 3], the involution of a ∗-regular ring R is proper
(i.e., x∗x = 0 implies that x = 0 for all x ∈ R).

Remark 3.13. If R is strongly π-∗-regular, then for any x ∈ R, x∗x = 0 implies
x ∈ Rnil. Indeed, by Theorem 3.2, there exist p ∈ P (R) and u ∈ U(R) such
that xm = pu = up for some m ≥ 1. Then 0 = (x∗)mxm = (xm)∗xm = u∗pu,
and thus p = 0, whence xm = 0.

4. Stable range conditions

In [13], Nicholson asked whether every strongly clean ring has stable range
one, and it is still open. Recall that a ring R is said to have idempotent stable

range one (written isr(R)=1) provided that for any a, b ∈ R, aR + bR = R
implies that a+ be ∈ U(R) for some e ∈ Id(R) (see [6, 16]). If e is an arbitrary
element of R (not necessary an idempotent), then R is said to have stable range

one. Clearly, if isr(R) = 1, then R is clean and has stable range one. We extend
the notion of isr(R) = 1 to ∗-versions.

Definition 4.1. A ∗-ring R is said to have projection stable range one (written
psr(R) = 1) if for any a, b ∈ R, aR + bR = R implies there exists p ∈ P (R)
such that a+ bp ∈ U(R).

The following result is motivated by [6, Proposition 2].

Proposition 4.2. Let R be a ∗-ring. The following are equivalent:

(1) psr(R) = 1.
(2) For any a, b ∈ R, aR + bR = R implies there exists p ∈ P (R) such

that a+ bp is right invertible.
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(3) For any a, b ∈ R, aR + bR = R implies there exists p ∈ P (R) such

that a+ bp is left invertible.

Proof. The proof is similar to that of [6, Proposition 2].
(1) ⇒ (2) is clear.
(2) ⇒ (3). Let a, b ∈ R with aR+bR = R. Then there is a projection p ∈ R

such that a+ bp = u is right invertible. Assume that uw = 1 for some w ∈ R.
Then wR + (1 − wu)R = R. So the hypothesis implies there exists q ∈ P (R)
such that w + (1 − wu)q is right invertible. Note that u[w + (1 − wu)q] = 1.
Thus w + (1 − wu)q is also left invertible, and hence invertible. This implies
that u ∈ U(R).

(3) ⇒ (1). Given any a, b ∈ R with aR+bR = R. Then there exists p ∈ P (R)
such that a+ bp is left invertible. We may let v ∈ R with v(a+ bp) = 1. Then
vR + 0R = R. By hypothesis, we can find a projection q such that v + 0q = v
is left invertible. So v is a unit, which implies that a+ bp ∈ U(R). Therefore,
psr(R) = 1. �

For a ∗-ring R, it is clear that if psr(R) = 1, then isr(R) = 1. However, there
exists a ∗-ring with isr(R) = 1 but not satisfies psr(R) = 1.

Example 4.3. Define the involution of Z2 by ∗ : x 7→ x. Let S = M2(Z2).
Then S is a ∗-ring. In view of [16, Corollary 3.4], isr(S) = 1 since S is unit
regular. Notice that P (S) = {O, I2, ( 1 0

0 0 ) , (
0 0
0 1 )}, and ( 1 0

0 0 )S + ( 0 0
1 0 )S = S.

However, ( 1 0
0 0 )+( 0 0

1 0 )P is not invertible for any P ∈ P (S). Hence, psr(S) 6= 1.

From Example 4.3, one can also find that the projection stable range one
property cannot be inherited to the matrix ring.

Proposition 4.4. Let R be a ∗-ring. If psr(R) = 1, then R is ∗-clean.

Proof. For any a ∈ R, the equation aR+ (−1)R = R implies that a+ (−1)p =
u ∈ U(R) for some p ∈ P (R). So a = p+ u, and hence R is ∗-clean. �

According to [15, Proposition 4], the ring in Example 4.3 is ∗-clean. So we
conclude that the converse of Proposition 4.4 is not true.

Following Nicholson [12], a ring R is exchange if for every a ∈ R, there exists
e2 = e ∈ aR such that 1− e ∈ (1− a)R. Clean rings are exchange, the converse
holds whenever the rings are abelian. A ∗-ring R is called ∗-abelian if every
projection of R is central [15].

Theorem 4.5. Let R be a ∗-ring. The following are equivalent:

(1) psr(R) = 1 and R is ∗-abelian.
(2) For any a, b ∈ R, aR + bR = R implies there exists a projection

p ∈ comm(a) such that a+ bp ∈ U(R).
(3) isr(R) = 1 and every idempotent of R is a projection.

(4) R is clean (or exchange) and every idempotent of R is a projection.

(5) R is ∗-clean and ∗-abelian.
(6) R is strongly ∗-clean.
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(7) For every a ∈ R, there exists a projection p ∈ aR such that 1 − p ∈
(1− a)R.

Proof. (1) ⇒ (2) and (3) ⇒ (4) are clear; (4) ⇒ (5) ⇒ (6) ⇒ (7) follows from
[11, Theorem 2.2].

(2) ⇒ (3). We only need to show that all idempotents are projections. Let
e ∈ Id(R). Then eR+ (−1)R = R. So there exists p ∈ P (R) such that ep = pe
and e− p ∈ U(R). Note that (e− p)(1− e− p) = (1− e− p)(e− p) = 0. Thus,
e = 1− p ∈ P (R). Therefore, every idempotent of R is a projection.

(7) ⇒ (1). Let e ∈ Id(R). Then there exists a projection p ∈ eR such that
1−p ∈ (1− e)R. So we obtain p = ep and 1−p = (1− e)(1−p). It follows that
e = p, and thus Id(R) = P (R). In view of Lemma 3.1, R is abelian. Note that
R is exchange. Then by [6, Theorem 12], isr(R) = 1, and hence psr(R) = 1. �

It is still unknown that whether strongly clean rings have stable range one
([13]). However, we have an affirmative answer of their ∗-versions.

Corollary 4.6. If R is a strongly ∗-clean ring, then psr(R) = 1.

The following example will reveal that the converse of Corollary 4.6 does
not hold.

Example 4.7. Let S = M2(Z3). The involution of S is defined by A → A∗,
where A∗ is the transpose of A ∈ S. Then S is not strongly ∗-clean by [7,
Theorem 2.3]. Since S is unit regular, isr(S) = 1 by [16, Corollary 3.4]. In
view of [9, Lemma 7], we have

Id(S) = {O, I2,
( x y
z 1−x

)

with yz = x− x2},

and

P (S) = {O, I2, ( 1 0
0 0 ) , (

0 0
0 1 ) , (

2 1
1 2 ) , (

2 2
2 2 )}.

We next prove that psr(S) = 1. Assume on the contrary. Then there exist

A =
(

a b
c d

)

and A′ =
(

a′ b′

c′ d′

)

with AS +A′S = S but A+A′P is not a unit for

any P ∈ P (S). That is,

det(A+A′P ) = 0.

This implies the following system of equations:

ad− bc = 0 (i), ad′ − b′c = 0 (ii),

a′d− bc′ = 0 (iii), a′d′ − b′c′ = 0 (iv),

ac′ − a′c = bd′ − b′d (v).

On the other hand, as isr(S) = 1, there exists E ∈ Id(S) \ P (S) such that
A+A′E ∈ U(S). Then E must be of the form

( x y
z 1−x

)

where yz = x− x2. By
Eqs. (i)-(iv), we obtain

det(A+A′E) = (ac′ − a′c)y − (bd′ − b′d)z.

Next we show that ac′ − a′c = bd′ − b′d = 0.
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Case 1. c 6= 0. Multiplying Eq. (v) by c and by substituting b′c = ad′, we
have (ac′ − a′c)c = bd′c− b′dc = (bc− ad)d′ = 0 by Eq. (i). Thus, ac′ − a′c =
bd′ − b′d = 0.

Case 2. d 6= 0. Multiplying Eq. (v) by d and by substituting a′d = bc′, we
have (bd′ − b′d)d = ac′d − a′cd = (ad − bc)c′ = 0 by Eq. (i). So ac′ − a′c =
bd′ − b′d = 0.

Case 3. c = d = 0. From Eqs. (ii) and (iii), we get ad′ = bc′ = 0. If
b 6= 0, then c′ = 0, it follows that ac′ − a′c = 0. If a 6= 0, then d′ = 0, and so
bd′ − b′d = 0. Thus ac′ − a′c = bd′ − b′d = 0.

Therefore, det(A+A′E) = (ac′−a′c)y− (bd′− b′d)z = 0 for any case, which
contradicts A+A′E ∈ U(S). Hence, psr(R) = 1.

By Theorem 4.5, we have the following result immediately.

Corollary 4.8. Let R be a ∗-ring. If Id(R) = P (R), then the following are

equivalent:

(1) R is (strongly) clean.

(2) R is exchange.

(3) R is (strongly) ∗-clean.
(4) isr(R) = 1.
(5) psr(R) = 1.
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