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A NOTE ON STRONGLY E-REFLEXrVE INVERSE SEMIGROUPS

L. O'CARROLL

Abstract. In contrast to the semilattice of groups case, an inverse semigroup S

which is the union of strongly ^-reflexive inverse subsemigroups need not be

strongly £-reflexive. If, however, the union is saturated with respect to the Green's

relation <3), and in particular if the union is a disjoint one, then 5 is indeed strongly

£-reflexive. This is established by showing that fy -saturated inverse subsemigroups

have certain pleasant properties. Finally, in contrast to the £-unitary case, it is

shown that the class of strongly £-reflexive inverse semigroups is not closed under

free inverse products.

The reader is referred to [1], [2] for the basic theory of inverse semigroups,

including the theory of free inverse products. Recall from [4], [5] that an inverse

semigroup S is said to be strongly E-reflexive whenever S is a semilattice of

E-unitary inverse semigroups, or alternatively, whenever there exists a semilattice

of groups congruence 17 on S such that only idempotents are linked to idempotents

under rj. In [4], [5] we studied this class of semigroups and showed that many of the

properties of semilattices of groups and of E-unitary inverse semigroups generalise

to this class, albeit sometimes in a weaker form. We continue this line of investiga-

tion here.

In what is by now a classic theorem, Clifford showed that an inverse semigroup

which is a union of groups is a semilattice of groups. We ask to what extent this is

true for strongly .E-reflexive inverse semigroups. It is already known that a

semilattice of strongly E-reflexive inverse semigroups is again strongly E-reflexive

[5]. The following simple example shows that we cannot hope for a full generalisa-

tion of Clifford's theorem.

Consider the bisimple inverse to-semigroup S(G, a), where the endomorphism a

of the group G is not injective. As noted in [4, p. 341], S(G, a) is not strongly

E-reflexive. However, using [1, Lemma 1.31], it is easily seen that S(G, a) is a

union of its maximal subgroups and copies of the bicyclic semigroup, and these are

all E-unitary.

The restriction we require will now be given, and the example just noted would

seem to indicate that it is the weakest possible.

Let S be an inverse semigroup with semilattice of idempotents E. Let U be an

inverse subsemigroup of S which is tf)-saturated in the sense that x ^ y E U

implies x E U, where tf) denotes the usual Green's relation on S. The maximal

group homomorphic image of U is denoted by U with ¿7 denoting the image of u

(u E U). Let U' = [x E S\x > u for some u E U); note that U' may equal S.
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The first result shows that U' has some pleasant properties.

Proposition, (i) U' is an inverse subsemigroup of S which contains U, and

xy £ U' implies x £ V and y £ U'.

(ii) The rule: x<¡>=üifx>u£U and x<j> = 0 otherwise, gives a well-defined

homomorphism </>: S —» U° such that <p| U is the canonical homomorphism onto U.

Proof, (i) xy > u £ U => xx ~ ' > xyy ~xx~x > uu~x => x > uu~xx '51 « =* x E

U', since U is <$ -saturated and <3l C tf).

Dually, y £ U'. The remainder of the result is easily proven.

(ii) Suppose x £ U' with x > u £ U and x > v £ U. Then u = ex, v = fx

where e = uu~x £ U n E,f = w~x £ U n E. Hence efu = efv, and ef £ E n

U, so that U = v. It is then almost immediate that <b is well-defined. The rest of the

result involves a little routine calculation, using (i).

Remark. Taking S to be a semilattice with more than two elements, we see that

U need not be an ideal of U' in Proposition 1.

The proposition enables us to prove our main result.

Theorem. Let S be a union of ty -saturated strongly E-reflexive inverse subsemi-

groups S¡, i £ I. Then S is strongly E-reflexive.

Proof. Each S¡ is a semilattice A, of ¿-unitary inverse semigroups if, À £ A,. It

is easily shown that each 7]A is ^-saturated in S. Hence we may suppose without

loss of generality that each S¡ is ¿-unitary. For each i £ I, let <£,: S -* S? be the

homomorphism defined as in (ii) above, and let T be the direct product of the S,°.

Then the <b¡ induce a homomorphism <j>: S —> T with s<j> having /th component

$(/>„ ; £ I. Now S<f> is a semilattice of groups, since T is. Suppose that x<b = e<b for

some e £ E, where x £ S¡ say. Then x<b¡ is the identity element of S¡, and since 5,

is ¿-unitary it follows that x £ E; whence the result.

Corollary. Let S be a disjoint union of strongly E-reflexive inverse subsemi-

groups. Then S itself is strongly E-reflexive.

Proof. Clearly each of the inverse subsemigroups in question is ^-saturated in

S.

Remark. The elementary theory of inverse semigroups shows that an inverse

semigroup S which is a union of groups is a disjoint union of its maximal

subgroups He, e £ E, and that this is the ^-decomposition of S. Hence S is the

union of the bD -saturated ¿-unitary inverse subsemigroups He. It is easy to show

that the homomorphism <b in the proof of the theorem is injective in this case.

Hence S is a subdirect product of the He with zero added possibly. From this one

can deduce, again by elementary means, that 5 is a semilattice of groups with the

multiplication defined by linking homomorphisms. Thus, modulo some elementary

results, our theory restricts to Clifford's classic theorems.

Now let E be the semilattice [e,f, g} where e > g,f > g, and e,f are incom-

parable. Let S be the semilattice of groups Ge u G} u Gg where Ge, Gg are trivial

and Gj is the cyclic 2-group; let T be the semilattice of groups He u Hf u Hg
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where Hg is the trivial group and He, Hf are copies of the cyclic 2-group (the

multiplications being defined in the obvious way). Consider the word w = eabc in

the free inverse product P of S and T, where e is the identity element of Ge and

a[b, c] is the non-identity element of He[Gf, Hf]. If ^ is a semilattice of groups

homomorphism on P, it is easily seen that w\p is an idempotent. On the other hand

one can find a representation of S and T in á5, the symmetric inverse semigroup on

five symbols, in which the image of w is not an idempotent. Hence w is not an

idempotent, so that P is not strongly E-reflexive.

On the other hand McAlister [3] has shown that the free inverse product of two

E-unitary inverse semigroups is again E-unitary.
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