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Abstract
Waves involving Bessel functions can oscillate faster than their band-limited Fourier
transforms suggest, with the superoscillations being fastest near phase singularities. Different
waves representing a ‘flyby’ close to a phase singularity are analysed. These can superoscillate
similarly, despite being differently normalized, or not normalizable at all.
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1. Introduction

The Bessel wave

ψ(r; l) = Jl(r) exp(ilφ)

(r = {x, y} = r{cosφ, sinφ}), (1)

with an optical vortex (phase singularity) of strength l at the
origin r = 0, can represent an exact solution of the free-space
Helmholtz equation in the r plane, with wavenumber k =
1, that is wavelength λ = 2π (or equivalently, a general
wavenumber k = 2π/(wavelength λ)with distances measured
in units of λ/2π ). Alternatively, it can represent a plane
section of a Bessel beam propagating in the z direction in
three dimensions, with wavenumber k0 and additional phase

factor exp(iz
√

k2
0/k

2 − 1). For these Bessel waves, the vortex
strength l also represents the angular momentum, though for
general waves the two concepts are unrelated [1].

As I discussed briefly elsewhere [2], the fact that in the
vicinity of the vortexψ oscillates arbitrarily fast, and therefore
faster than the wavelength λ = 2π , means that this wave is an
example of a superoscillatory function, that is, a band-limited
function varying on scales smaller than its largest Fourier
component (here k = 1): it is ‘faster than Fourier’ [3–8]. And
the fact that Jl vanishes at the origin as rl illustrates the general
phenomenon that functions are exponentially weak (here as a
function of l) where they superoscillate.

My aim here is to explore and illustrate this connection in
a little more detail. In a sense this study of superoscillation
near individual vortices is complementary to statistical
analyses of random waves [9, 10], which showed that

superoscillation (in a sense to be described in section 2) is
unexpectedly common: in the plane, one-third of the area is
superoscillatory.

2. Superoscillations in the plane

A characterization of the superoscillatory behaviour of ψ is
the local wavevector, that is, the local phase gradient, equal to
the quantum weak value [11, 12] of the momentum operator
k̂ ≡ −i∇ (see section 2.1 of [7]). For (1) this is particularly
simple—just the azimuthal (vortex) flow

kw(r) = ∇ argψ =
Reψ∗k̂ψ
|ψ |2

=
1

|ψ |2
〈ψ |

1
2
(k̂δ(r̂− r)+ δ(r̂− r)k̂)|ψ〉 =

l

r
eφ . (2)

Superoscillations correspond to |kw| > 1, that is r < l. This
radius corresponds to the crossover of the real function Jl(r)
from exponentially increasing to oscillatory. For r > l the
wave is not superoscillatory, and the oscillations of Jl(r) are
slower than 1, tending asymptotically, that is for r � l, to
being proportional to cos(r−lπ/2−π/4) [13], that is, varying
on the scale of the wavelength.

It is worth remarking that for the analogue of (1)
representing a wave from a source, that is, the Hankel wave

ψH(r; l) = H(1)
l (r) exp(ilφ), (3)

the local wavevector contains a radial component:

kw(r) =
l

r
eφ + Im ∂r log H(1)

l (r)er. (4)
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Figure 1. Lines of the wavevector (4) for Hankel wave (3) with
l = 10 and, showing tight spiralling inside the circle r = l (dashed),
radiating outwards for r > rc with the lines asymptotically tangent
to the circle r = l.

This represents slow spiralling out from the origin (figure 1),
near which the azimuthal component dominates, the distance
between successive windings being O(r3) [14]. There is
a rapid but smooth transition near the circle r = l, from
slow to fast outward spiralling, asymptotically (i.e. for r �
l) tangential to the circle l, with the radial component
dominating. (For a sink, the Bessel function is H(2)

l (r) and
the spiralling is inwards.)

Returning to the wave (1), this has no zeros in the
superoscillatory region r < l except the strength l vortex at
the origin. For r > l there are the non-generic circular nodal
lines at the zeros of Jl. However, ψ can be made generic by
the simple perturbation

ψ(r; l, ε) = Jl(r) exp(ilφ)+ εJ0(kr). (5)

This splits the zero at r = 0 into a ring of l strength 1 vortices,
which for small ε are located near

r = 2(εl!)1/l, φ =
(2n− 1)π

l
(1 ≤ n ≤ l). (6)

Figure 3. Geometry and coordinates for one-dimensional flyby.

The superoscillatory phase behaviour of (1) is thus converted
into sub-wavelength intensity variations; figure 2 illustrates
how rich a structure there can be within one square
wavelength.

3. Superoscillations in a one-dimensional flyby

In standard weak measurement theory [11, 12, 15],
superoscillations occur as functions of a single variable, and
several recipes are known [3, 16]. The Bessel wave (1) can
provide another example, by regarding it as a function of x for
fixed y, corresponding to flyby of the vortex (figure 3):

ψ(x; y, l) = exp
(

i l arctan
y

x

)
Jl

(√
x2 + y2

)
. (7)

The weak momentum (local wavenumber) is

k(x) = ∂x argψ = ∂xl arctan
y

x
= −

ly

x2 + y2 . (8)

Which is superoscillatory where |k(x)| > 1, that is

|x| <
√

y(l− y). (9)

This flyby interval lies within the circle with radius l. Of
course we must choose y < l.

The strongest superoscillations are near x = 0, where
k(0) = l/y. These oscillations are faster than Fourier by
the factor l/y. Figure 4 illustrates the crossover between
the superoscillatory behaviour for small x and the ‘normal’
oscillations in the region

√
x2 + y2 > l where the Bessel

function oscillates.

Figure 2. Perturbed wave (5) for l = 10 and ε = 10−7, plotted for one square wavelength centred on r = 0 for (a) log |ψ(r; l, ε)| and
(b) wavefronts arg ψ(r; l, ε) at intervals of π/4. The radius in (6) is r = 1.807 = 0.288λ.
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Figure 4. Flyby function (7) for l = 5, y = 1, so the
superoscillations are faster than Fourier by a factor 5. Thin curves:
log |ψ |; thick curves: log |Reψ |; dashed curves: log |Imψ |.
(a) Shows the crossover between the superoscillations for small x
and the Bessel oscillations, with wavelength λ = 2π , expected on
the basis of the Fourier content of ψ . (b) Magnifies the
superoscillatory region.

In the superoscillatory range, ψ as given by (7) has the
asymptotic behaviour

ψ(x; y, l) ≈ A (y, l) exp
(
−i

lx

y

)
× exp

(
lx2

2y2 + i
x3

3y3

)
(x < y), (10)

where

A(l, y) = ilJl(y) ≈
1
√

2π l

(
iey

2l

)l

(l� 1, y� l).

(11)

This example exhibits the phenomenon, familiar from other
superoscillatory functions [3, 16], of the function increasing
antigaussianly away from the superoscillatory region, with the
superoscillations gradually slowing; see figure 5.

4. Normalizing the flyby

The flyby function (7) is band-limited, because, from a
standard integral representation of the Bessel function [13],

ψ(x; y, l) =
1

2π

∫ π

−π

dθ exp {i (x sin θ + y cos θ − lθ)}

=
1

2π

∫ 1

−1
dq a(q) exp(iqx) (12)

Figure 5. Superoscillatory region of flyby function, for
l = 20, y = 2, so the superoscillations are faster than Fourier by a
factor 10. Full curve, log |Reψ | for exact function (7); dashed
curve: approximation (10).

where

a(q) =
exp(−ilsin−1q)√

1− q2

[
exp

(
iy
√

1− q2

)
+ (−1)l exp

(
−iy

√
1− q2

)]
. (13)

But the flyby function is not square-integrable. One way to
see this is from the large-argument asymptotics of the Bessel
function [13], giving

|ψ(|x|; y, l)|2 ≈
2
π |x|

cos2
(

x−
1
2

lπ −
1
4
π

)
(|x| � l). (14)

This implies that the normalization integral diverges
logarithmically. The same conclusion follows from the
integral of |a(q)|2, which diverges at q = ±1 because of the
denominator

√
1− q2 in (13).

However, it is easy to create flyby functions from (7) that
are square-integrable (this is desirable if the superoscillatory
function is to be a model for a quantum wavefunction). One
way is simply to take the imaginary part, because, from the
decay of the phase factor in (7),

(Imψ(|x|; y, l))2 ≈
2l2y2

π |x3|
cos2

(
x−

1
2

lπ −
1
4
π

)
(k|x| � l), (15)

for which the normalization integral converges. In the Fourier
representation, the counterpart of (12) is

Imψ(x; y, l) =
1

2π

∫ 1

−1
dq aIm(q) exp(iqx), (16)

where

aIm(q) =
1
2i
(a(q)− a∗(−q))

=
sin(y

√
1− q2)√

1− q2
[exp{−ilsin−1q}

− (−1)l exp{ilsin−1q}], (17)
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cancelling the singularity at q = ±1. The faster decay of Imψ

is evident in figure 4(a).
An alternative approach, suggested by Professor

Aharonov [17] is to take the derivative with respect to y:

∂yψ(x; y, l) = exp
(

il arctan
y

x

)
×

(
ilx

x2 + y2 Jl

(√
x2+y2

)
+

y√
x2 + y2

J′l

(√
x2+y2

))

=
1

2π

∫ π

−π

dθ cos θ exp{i(x sin θ + y cos θ − lθ)}

=
1

2π

∫ 1

−1
dq
√

1− q2a(q) exp(iqx), (18)

from which it is clear that the derivative has killed the
divergence, making the function normalizable. In fact, from
Bessel asymptotics,

|∂yψ(x; y, l)|2 ∼ 1/|x|3 as |x| → ∞, (19)

so the convergence of the normalization integral for ∂yψ is the
same as that for Imψ .

There has been some discussion [5, 6] of how to
characterize or optimize the degree of superoscillation
in functions ψ such as those considered here, based
on comparing the value of ψ where it superoscillates
with its inevitably much larger values elsewhere. For
periodic superoscillatory functions, it is natural to define the
‘superoscillation yield’ as the ratio of the integral of |ψ |2 over
the superoscillation region to its integral over the period [5].
And at first sight a similar definition would seem natural for
ψ defined over the whole real line −∞ < x < ∞. But it is
not natural, because the value of

∫
∞

−∞
dx |ψ(x)|2 is dominated

by the decay as |x| → ∞, which can be different for two
functions with essentially the same superoscillatory behaviour
rising to essentially the same largest values.

To illustrate this, we can compare superoscillatory
functions scaled so that the superoscillations near x = 0 are
of order unity, that is

ψsc(x; y, l) = exp
(

i l arctan
y

x

) Jl(
√

x2 + y2)

Jl(y)
, (20)

and

∂yψsc(x; y, l) ≡ exp
(

il arctan
y

x

)

×

 ilx
x2+y2 Jl(

√
x2 + y2)+

y
√

x2+y2
J′l(
√

x2 + y2)

J′l(y)

 . (21)

Figure 6 shows |ψsc|, which is not normalizable, Imψsc,
which is, and Re ∂yψsc, which is also normalizable but has
a very different normalization integral. All three functions
superoscillate similarly and rise to largest similar values
near x =

√
l2 − y2 where the Bessel functions change from

oscillatory to exponential, so it seems that their eventual
decay is irrelevant to their superoscillatory behaviour. For
such functions, defined on the whole real line, it might be
preferable to define the degree of superoscillation differently,

Figure 6. Scaled flyby functions (20) and (21) for l = 10, y = 2.
Thin curve, log |ψsc|; dotted curve, log |Imψsc|; dashed curve,
log |Re ∂yψsc|. (a) Over a long range, showing the functions rising to
large values and then decaying; (b) magnification in the
superoscillatory region.

in terms of the ratio of the largest values to the superoscillatory
values.
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