University of Wollongong

Research Online

A note on supplementary difference sets

Jennifer Seberry

University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Seberry, Jennifer: A note on supplementary difference sets 1974.
https://ro.uow.edu.au/infopapers/957

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

A note on supplementary difference sets

Abstract
Let $S_{1}, S_{2}, \cdots, S_{n}$ be subsets of G, a finite abelian group of order v , containing $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{kn}$ elements respectively. Write T_{i} for the totality of all differences between elements of S_{i} (with repetitions), and T for the totality of elements of all the T_{i}. We will denote this by $T=T_{1} \& T_{2} \& \ldots \& T_{n}$. If T contains each nonzero element of G a fixed number of times, lambda say, then the sets $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}$ will be called $\mathrm{n}-\left\{\mathrm{v} ; \mathrm{k}_{1}, \mathrm{k}_{2}\right.$, ..., k_{n}; lambda\} supplementary difference sets.
\section*{Disciplines}
Physical Sciences and Mathematics
\section*{Publication Details}
Jennifer Seberry Wallis, A note on supplementary difference sets, Aequationes Mathematicae, 10, (1974), 46-49.

A Note on Supplementary Difference Sets

Jennifer Wallis (Newcastle, New South Wales, Australia)

Let $S_{1}, S_{2}, \ldots, S_{n}$ be subsets of G, a finite abelian group of order v, containing $k_{1}, k_{2}, \ldots, k_{n}$ elements respectively. Write T_{i} for the totality of all differences between elements of S_{i} (with repetitions), and T for the totality of elements of all the T_{i}. We will denote this by $T=T_{1} \& T_{2} \& \ldots \& T_{n}$. If T contains each non-zero element of G a fixed number of times, λ say, then the sets $S_{1}, S_{2}, \ldots, S_{n}$ will be called $n-\left\{v ; k_{1}\right.$, $\left.k_{2}, \ldots, k_{n} ; \lambda\right\}$ supplementary difference sets.

If $k_{1}=k_{2}=\cdots=k_{n}=k$ we will write $n-\{v ; k ; \lambda\}$ to denote the supplementary difference sets. If $k_{1}=k_{2}=\cdots=k_{i}, k_{i+1}=k_{i+2}=\cdots=k_{i+j}, \ldots, k_{l}=\cdots=k_{n}$ then sometimes we write $n-\left\{v ; i: k_{1}, j: k_{i+1}, \ldots ; \lambda\right\}$. It can be easily seen by counting the differences that the parameters of $n-\left\{v ; k_{1}, k_{2}, \ldots, k_{n} ; \lambda\right\}$ supplementary difference sets satisfy

$$
\lambda(v-1)=\sum_{j=1}^{n} k_{j}\left(k_{j}-1\right) .
$$

We use braces, $\}$, to denote sets and square brackets, [], to denote collections where repetitions may remain.

We now let $v=4 r(2 \lambda+1)+1=p^{\gamma}$, where p is a prime and further let

$$
H_{i}=\left\{x^{4 r j+i}: 0 \leqslant j \leqslant 2 \lambda\right\}, \quad i=0,1, \ldots, 4 r-1
$$

with x a primitive element of $G F(v)$. Write

$$
L=H_{2 i_{1}} \cup H_{2 i_{2}} \cup \cdots \cup H_{2 i_{m}}
$$

for some $m, 0<m<2 r$, where the i_{j} are distinct integers. Now we consider the differences between elements of $H_{2 i}$, that is, the collection

$$
\begin{gather*}
{\left[x^{4 r j+2 i}-x^{4 r l+2 i}: j \neq l, 0 \leqslant j, l \leqslant 2 \lambda\right]} \tag{1}\\
=\left\{x^{4 r j+2 i}: 0 \leqslant j \leqslant 2 \lambda\right\} \text { times }\left[1-x^{4 r(l-j)}: l \neq j, 0 \leqslant l \leqslant 2 \lambda\right] \\
=H_{2 i} \text { times }\left[1-x^{4 r(l-j)}: l \neq j, 0 \leqslant l \leqslant 2 \lambda\right]
\end{gather*}
$$

and, since any element of a group multiplied onto a coset gives a coset, this expression must represent cosets with certain multiplicities, say b_{k}, write

$$
\begin{equation*}
={\underset{k=0}{4 r-1} b_{k} H_{k}, ~}_{\text {, }} \tag{2}
\end{equation*}
$$

where, since $H_{2 i}$ has $2 \lambda+1$ elements, the number of elements in (1) is $2 \lambda(2 \lambda+1)$ and the number of elements in (2) is $\sum_{k=0}^{4 r-1} b_{k}(2 \lambda+1)$. So

$$
\sum_{k=0}^{4 r-1} b_{k}=2 \lambda .
$$

Now $2 \lambda+1$ is odd, so $-1 \in H_{2 r}$. Then if $x^{a}-x^{b}$ appears in (1) so does $x^{b}-x^{a}$. Thus whenever an element y occurs so does $-y$ and $y \in H_{c} \Rightarrow-y \in H_{c+2 r}$. Thus $b_{k}=b_{k+2 r}$.

The differences between elements of $H_{2 i}$ and $H_{2 k}$ are given by the collection

$$
\begin{align*}
{\left[x^{4 r j+2 i}-x^{4 r l+2 k}: 0 \leqslant\right.} & j, l \leqslant 2 \lambda] \tag{3}\\
& =\left\{x^{4 r j+2 i}: 0 \leqslant j \leqslant 2 \lambda\right\} \text { times }\left[1-x^{4 r(l-j)+2(k-i)}: 0 \leqslant l \leqslant 2 \lambda\right] \\
& =H_{2 i} \text { times }\left[1-x^{4 \boldsymbol{r}(l-j)+2(k-i)}: 0 \leqslant l \leqslant 2 \lambda\right] \\
& =\underset{n=0}{4 \boldsymbol{r}-1} c_{n} H_{n}
\end{align*}
$$

where c_{n} give the multiplicities. By the same reasoning as before,

$$
\sum_{n=0}^{4 r-1} c_{n}=2 \lambda+1 .
$$

Now consider the differences from L, that is
[differences from $H_{2 i_{j}}: j=1,2, \ldots, m$]
\& [differences from $\left.H_{2 i_{j}}-H_{2 i_{k}}: i_{j} \neq i_{k}, 0 \leqslant i_{j}, i_{k} \leqslant m\right]$
$=\&_{k=0}^{4 r-1} a_{k} H_{k} \quad u \operatorname{sing}$ (2) and (4).
Counting elements we see (5) and (6) have $m(2 \lambda+1)(m(2 \lambda+1)-1)$ and (7) has $(2 \lambda+1) \sum_{k=0}^{4 r-1} a_{k}$ elements. Hence

$$
\sum_{k=0}^{4 r-1} a_{k}=m(m(2 \lambda+1)-1) .
$$

Finally, we note that in (6) if $H_{a}-H_{b}$ occurs so does $H_{b}-H_{a}$ so if y occurs so does $-y$ and as before we see that

$$
\begin{equation*}
a_{k}=a_{k+2 r} \tag{8}
\end{equation*}
$$

Write

$$
\begin{align*}
& w=\sum_{k=0}^{r-1} a_{2 k}-\sum_{k=0}^{r-1} a_{2 k+1} \tag{9}\\
& z=(w, w+m), \quad s=|w+m| / z, \quad t=|w| / z
\end{align*}
$$

We now show, using L to construct sets of size $m(2 \lambda+1)$ and $m(2 \lambda+1)+1$, how to find some supplementary difference sets.

THEOREM 1. Let $v=4 r(2 \lambda+1)+1=p^{\gamma}$, where p is a prime and $r=2^{\delta}$. Then s copies of each of

$$
L_{j}=x^{2 j} L, \quad j=0,1, \ldots, r-1
$$

and t copies of each of

$$
K_{j}=0 \cup x^{2 j+i} L, \quad j=0,1, \ldots, r-1,
$$

where s, t and w are given by (9), $i=0$ if (w is negative and $m>-w$), $i=1$ otherwise, are

$$
\begin{aligned}
r(s+t)-\{4 r(2 \lambda+1)+1 ; r t: m(2 \lambda+1)+1 & ; r s: m(2 \lambda+1) \\
& \left.\varphi \frac{1}{4}\left[m^{2}(2 \lambda+1)(t+s)+m(t-s)\right]\right\}
\end{aligned}
$$

supplementary difference sets.
Proof. Since $2 \lambda+1$ is always odd, $-1 \in H_{2 r}$, we have from (8) $a_{k}=a_{k+2 r}$. The totality of differences from

$$
L_{j}=H_{2 i_{1}+2 j} \cup H_{2 i_{2}+2 j} \cup \cdots \cup H_{2 i_{m}+2 j}
$$

is $x^{2 j}$ times the totality of differences from L_{0} or

So by taking all the differences from $L_{j}, j=0,1, \ldots, r-1$ we have

$$
\begin{aligned}
X & =\sum_{\substack{i=0 \\
2 r-1}}^{2 r-1}\left\{\left(\sum_{k=0}^{r-1} a_{2 k}\right) H_{2 i} \&\left(\sum_{k=0}^{r-1} a_{2 k+1}\right) H_{2 i+1}\right\} \\
& =\underset{i=0}{\&}\left(\alpha H_{2 i} \& \beta H_{2 i+1}\right) .
\end{aligned}
$$

The totality of differences, then, from the sets
is

$$
\begin{gathered}
K_{j}=0 \cup H_{2 i_{1}+2 j+1} \cup H_{2 i_{2}+2 j+1} \cup \cdots \cup H_{2 j_{m}+2 j+1}, \quad j=0,1, \ldots, r-1, \\
Z=\sum_{i=0}^{2 r-1}\left(\beta H_{2 i} \&(\alpha+m) H_{2 i+1}\right) .
\end{gathered}
$$

There are four cases to consider:
(i) $\alpha \geqslant \beta$ and $\beta \geqslant \alpha+m$, which is impossible;
(ii) $\alpha \leqslant \beta$ and $\beta \leqslant \alpha+m$. Here $w=\alpha-\beta$ is negative and $m>\beta-\alpha=-w$.

So, if instead of the sets K_{j} we use the totality of differences from the sets $0 \cup L_{j}$, then we have the differences

Now s times X plus t times Y (where s and t are defined in (9)) gives ($\beta m / z$) G;
(iii) $\alpha<\beta$ and $\beta \geqslant \alpha+m$; and
(iv) $\alpha>\beta$ and $\beta \leqslant \alpha+m$.

In these last two cases s times X and t times Z gives

$$
\left(\left(\beta^{2}-\alpha^{2}-\alpha m\right) / z\right) G \text { and }\left(\left(\alpha^{2}+\alpha m-\beta^{2}\right) / z\right) G
$$

respectively.
Then, noting that by summing the elements of X in two ways we find $\alpha+\beta$ $=\frac{1}{2} m[m(2 \lambda+1)-1]$, we have the result of the theorem.

EXAMPLE. With $v=41, r=2, \lambda=2$, and $m=3, w=1, s=2, t=1$ we find $6-\{41$; $2: 16,4: 15 ; 33\}$ supplementary difference sets.

In the theorem the initial set L has been left reasonable undecided but if we choose another initial set.

$$
M_{j}=H_{2 j_{1}+2 j} \cup H_{2 j_{2}+2 j} \cup \cdots \cup H_{2 j_{m}+2 j} \quad j=0,1, \ldots, r-1
$$

where all the j_{a} are distinct, we may get a different set of supplementary difference sets.
For example: with $v=41, r=2, \lambda=2$, with $m=2$ and the initial set $H_{0} \cup H_{2}$ we get $w=1, s=3, t=1$ and hence $8-\{41 ; 2: 11,6: 10 ; 19\}$ supplementary difference sets, while with the initial set $H_{0} \cup H_{4}$ we get $w=-3, s=1, t=3$ and hence $8-\{41 ; 6: 11$, $2: 10 ; 21\}$ supplementary difference sets.

Finally we note that balanced incomplete block designs may be obtained from supplementary difference sets with two k values by using the results of Jennifer Wallis [2].

REFERENCES

[1] Bose, R. C., On the Construction of Balanced Incomplete Block Designs, Ann. Eugenics 9, 353-399 (1939).
[2] Wallis, J., On Supplementary Difference Sets, Aequationes Math. (to appear).

