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Resumo 
Este artigo discute testes para uma rafz unita.ria permitindo a possibilidade 

de uma quebra unica no intercepto e/ou na inclin�ao da fun�ao de tendencia 
do modelo de outlier aditivo discutido em Perron (1989). Detectamos e corrigi
mos urn erro na fun�ao de distribuic;ao assint6tica do teste proposto neste caso. A 
modific�fio fcita nos permite construir uma estatlstica com a mesma distribuic;a.o 
assint6tica da encontrada em Perron (1989). Discutimos, tambem, a propriedade 
de aproxirnac;Oes assint6ticas e varias extensOes onde 0 ponto de quebra e descon
hecido. 

Abstract 
This note discusses tests for a unit root allowing the possibility of a one

time change in the intercept and/or the slope of the trend function in the additive 
outlier model considered in Perron (1989). We discuss and correct an error in 
the stated asymptotic distributions of the tests in this case. We propose a simple 
modification of the procedure which yields statistics having the same asymptotic 
distributions as stated in Perron (1989). We also discuss the adequacy of the 
asymptotic approximations and various extensions to the case where the break
point is unknown with corresponding asymptotic critical values. 

Tests for a unit root allowing for the possible presence of a one
time change in the intercept and/or slope of a series were proposed 
by Perron (1989) (henceforth referred to as P89). He considered two 
general classes of models: a) the additive outlier model, appropriate 
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when the change is sudden, and b) the innovational outlier model, 
appropriate when the change is gradual. In this note, we discuss an 
error in the treatment of the asymptotic distributions of the tests 
associated with the additive outlier model. We point out that the 
asymptotic distributions of these statistics are different than those 
stated in P89 and also that they depend on the correlation structure 
of the data when a change in intercept is involved, even if the appro
priate order of the autoregression is used. Fortunately, in these cases, 
a simple modification is available which yields statistics having the 
same asymptotic distributions (invariant to nuisance parameters) as 
stated in P89. This transformation is discussed, as well as the asymp
totic approximation that is related. We also discuss extensions to 
the case where the breakpoint is unknown and present corresponding 
asymptotic critical values. 

The present note contains an extended discussion and proofs of 
assertions stated in Perron (1992). It covers cases dealing with trend
ing data, where as Perron and Vogelsang (1992) cover similar correc
tions and extensions to Perron (1990) for the case of non-trending 
data. The case of trending data offers some interesting contrasts, 
especially when a change in slope is involved with both segments of 
the trend joined at the time of change. Here, the two-step method 
suggested in Perron (1989) is still valid. The asymptotic distribu
tions are, however, different from those stated earlier for a known 
breakpoint and also different from the limiting distribution stated in 
Zivot and Andrews (1992) for an unknown breakpoint. We provide 
tabulated critical values, in this and other settings, that should be 
useful for applications. 

1. The models and the statistics. 

The additive outlier models allow for a sudden change in the 
intercept and/or slope of a series {Yt}f, say, at time To(1 < To < T). 
Model A (the cmsh modeQ specifies a change in the intercept, model 
B a change in the slope (restricting the segments to be joined) and 
Model C allows for both a change in intercept and slope. The models 
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are specified, respectively, as (for t = 1, ... , T): 

y, = fJ, + f3t + 'YDU, + Z" 

y, = fJ, + f3t + eDT; + Z" 
y, = fJ, + f3t + 'YDU, + eDT, + Z" 

(1.A) 
(1.B) 

(1.e) 

where DU, = 1, DT; = t - Tb and DT, = t if t > nand DU, = 
DT; = DT, = 0 otherwise. The noise component Z, is assumed to be 
a finite order ARMA(p,q) process of the form A(L)Z, = B(L)v,(Zo = 
0) with v, � i.i.d.(O,oD with finite fourth moment. It is assumed 
that all the roots of B(z) = 0 are strictly outside the unit circle 
and that the polynomial A(z) = 0 has at most one root on the unit 
circle with all others strictly outside. Denote by a the sum of the 
autoregressive coefficients, 1-A(1), and write A(L) = (l-aL)A*(L). 
Under the null hypothesis a = 1, and under the alternative hypothesis 
a < 1. Using this notation, we can write Z, = aZ'_l + e, where 
e, = A'(L)-l B(L)v,. 

Let {ii!;i = A, B, e} be the residuals from a regression of y, on 
{I, t, nU,}(i = A), {I, t, DT;}(i = B), {I, t, DU" DT,}(i = e). The 
tests based on the additive out lier models froin P89 are the normalized 
bias T(ai-1) and the t-statistic for testing the null hypothesis a = 1, 
denoted by tai, in the following second step regression: 

-i -i-i +-i y, = a Y'-l u ,' (i = A,B,e) t=2, ... ,T. 

2. The limiting distributions. 

(2) 

Let wi(r) be the projection residual of a Wiener process w(r) 
on the subspace generated by the functions {l,r,du(r)}(i = A), 
{l,r,dr*(r)}(i = B) and {l,r,du(r),dr(r)}(i = e) where du(r) = 1, 
dr*(r) =r-oX,dr(r) =r if r > oX anddu(r) = dr*(r) = dr(r) =O oth
erwise. Here, oX = [Tb/TJ is the ratio of pre-break sample size to total 
sample size. Denoting by"==?" weak convergence in distribution, the 
limiting distributions of T(ai -1) and tai are, instead of those stated 
in Thceorem 2 of P89 (with 9i(i = A, B, e), '1/11, 1/J4, 1/J5, D4 and D12 as 
define<l in that Theorem, see also Perron (1992) where 9E and ge are 
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correctly stated to be defined by gB = A3/3 and go = (1 - A)3/12): 
. 1 1 1 T(a' - 1) ==>(f wi(r)dw(r) + {j + LiMiJ[I wi(r)2dr]- , o 0 

1 
t"i ==>(f wi(r)dw(r) + {j + LiMi] o 

(3) 

(4) 

for i = A,O, where LA = D4/[(1 - A)A] + ,p1/(29A), MA = W(A) -
'A-1 It w(r)dr - A,p!/(29A), Lo = D4/[(1 - A)A] + 6D12/A2 - (1 -
A),p5/(2go), Mo = W(A) - A-1 It w(r)dr - 6D1dA2. Also {j = (0"2_ 
0"�)/20"2 where 0"2 = limT�oo T-1 E[S?] with ST = '£;=1 et and 0"; = 
limT�oo T-1 '£;=1 E(e�). For Model B: 

1 1 
T(aB - 1) ==> (f wB(r)dw(r) + {j + (,p4/gB) I wB(r)dr] o A 

1 
(f wB(r)2dr]-1, o 

1 1 
t"B ==> (O"/O"e)[J wB(r)dw(r) + {j + (,p4/gB) I wB(r)dr] o A 

(5) 

(6) 

All proofs are in the Appendix. Consider first results pertaining to 
Models A and C. The limiting distributions in (3) and (4) are free 
of nuisance parameters when the errors et are uncorrelated (in which 
case 0" e = 0") and percentage points could be tabulated. There are 
two problems with this approach. One is that the Phillips-Perron 
(1988) nonparametric correction is different and more complex than 
that stated in Section 4.1 of P89. More importantly, it can be shown 
that the use of the augmented regression: 

k 

yi = &iY:_1 + I: CjtlY:_j + Ut, (7) 
j=1 
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does not eliminate the dependency of the t-statistic on nuisance pa
rameters even when Zt is an autoregressive process of known order. 
There is, however, a simple way to modify the second step regression 
(2) to avoid these problems. Consider first the modification: 

-; ';D(TB) + . ;-; +.; Yt = W t a Yt-l ut· (i = A,O) (t = 2, ... , T) (8) 

Let t&i be the t-statistic for testing a; = 1 in (8). It is shown in the 
Appendix that: 

. 1 1 
T(&' - 1) =} (fw;(r)dw(r) +8)(f w;(r)2dr)-1, (i = A,O) (9) 

o 0 
1 1 

t&i =} (O/Oe)(f w;(r)dw(r) + 8)(f w;(r)2dr)-1/2. (i = A, 0) 
o 0 

(10) 

Hence, if the one-time dummy D(TB)t is included in the second 
step regression, the asymptotic distributions of the statistics are the 
same as those stated in P89, and in particular, the same as those 
associated with the innovational outlier model (regressions (12) and 
(14) in P89), When the errors are martingales differences ° = Oe and 
hence 0 = O. In that case the limiting distributions stated in (9) and 
(10) are invariant to nuisance parameters. Critical values are given 
in Table 4 (A, B) and 6 (A, B) of P89. 

Consider now the case of. Model B. Here things are different. 
F irst, the limiting distributions are different from the innovational 
outlier case only insofar as an extra term (independent of nuisance 
parameters) is present in the numerator. Hence, on the one hand, the 
application of the Phillips-Perron transformations (as discussed in 
section 4.1 of P89) is still valid provided the asymptotic distribution 
in (8) and (9) with Oe = ° are used. Also, contrary to the case with 
Models A and C, the limiting distribution of the t-statistic, obtained 
using the augumented regression (7), is given by (6) with Oe = ° 
when the noise component is an autoregression. 

Hence, the critical values of the limiting distributions (5) and (6) 
with a e = ° can be used for inference purposes. These are different 

R. de Econometria 13(2) novembro 1993/abril 1994 185 



A note On the asymptotic distribu'c.ions 

from those stated in P89 and are tabulated in Perron (1992). Ta
ble 1 reproduces the asymptotic distribution of taB and reports finite 
sample critical values to assess the adequacy of the asymptotic ap
proximation (the data-generating process used being a random walk 
with N(O, 1) innovations and initial condition set at zero; 10,000 
replications are used). The approximation is seen to be adequate for 
common sample sizes. Comparing the results with those in Tables 
5.A and 5.B of P89, it is seen that the differences in the asymptotic 
distributions are mainly in the right tail, the left tail being very sim
ilar. Furthermore, the corrected asymptotic distribution is, unlike 
the other cases, clearly asymmetric around A = 0.5 (again, especially 
given the behavior of the distribution in the right tail). 

3. Extensions to more general error processes. 

Consider first the case of model B. Applying the augumented 
regression (7) when the DGP is an AR(p) with a unit root leads to a 
t-statistic with an asymptotic distribution equivalent to that stated in 
(6) with r7e = r7 (details of the proof are available on request). Hence, 
the limiting distribution is different from that tabulated in P89 but 
is otherwise free of nuisance parameters, and the appropriate critical 
values are those in Table 1 of this note. Similarly the corresponding 
Phillips-Perron Zeta) and Z(&) statistics are still valid if the asymp
totic critical values in Tables 1 and 2 of this note are used. 

Consider now the transformations to (8), for Models A and C, 
necessary for the limiting distributions of the tests to be invariant to 
nuisance parameters when Z, is an ARMA(p, q). First, the extensions 
of the Phillips and Perron (1988) statistics, discussed in Section 4.1 
of P89, remain valid provided &; and tai in equations (6) and (7) of 
P89 are replaced by a; and t&i from (8) above (similarly &2 and &� 
need to be replaced by estimators based on the residuals from that 
regression). The asymptotic critical values are still those in Table 
4.A-B and 6.A-B of P89. Secondly, the Said-Dickey (1984) extension, 
discussed in Section 4.1 of P89, remains valid for Models A and C 
provided the augmented regression (7) is replaced by: 

k k 

vi = L,wjD(TB)t-j + c';vi-1 + L, cjllvi_j + u" (i = A, C) (11) 
j=O j=l 
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The introduction of the dummies {D(T Blt-j }j;o makes the asymp
totic distribution of the t-statistic for Ct = 1 in (11), t&i, be that 
stated in (10) with q = 17 •• The introduction of these dummies is 
sufficient to correct the problems discussed above for the additive 
outlier model and the critical values in Tables 4.B and 6.B of P89 are 
appropriate. 

4. Extensions to unknown break points. 

Several recent studies have considered extensions of the tests 
proposed in P89 to the case where the break point is unknown (see 
Banerjee, Lumsdaine and Stock (1992), Zivot and Andrews (1992) 
and Perron (1991». Among the tests considered in these papers 
are minimal t-statistics obtained over all possible break points, i. e. 
t&i(inf) == inf»'A t&i(A) where t&i(A) is the t-statistic for testing Ct = 
1 in model i with a break point fixed at [AT] and A is a closed 
subset of the interval (0, 1). Using results in Zivot and Andrews 
(1992), the limiting distribution of the minimal t-statistic from Model 
B (regression (7» is: 

(12) 

Tabulated critical values of the asymptotic distribution in (12) 
are presented in Table 3. These are obtained using simulation meth
ods with a grid of 1,000 values for A and 50,000 replications. The 
critical values of the corresponding asymptotic distributions of the 
t-sta.tistics associated with Models A and C are presented in Zivot 
and Andrews (1992). Note that Table 3 of Zivot aud Andrews (1992) 
does not provide the asymptotic distribution of t&B(inf) as obtained 
from regression (7). They use a one step procedure which does not 
permit the change in slope to be present under the null hypothesis. 

For completeness Table 4 gives the asymptotic critical values 
of the distribution of inf»,A [JJ wB(r)dw(r) + (.p4/gB)Jl wB(r)dr] 
[JJ wB(r)2drJ-l, for Model B. These critical values can be used when 
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considering the minimal value (over all break points) of the Phillips
Perron Z( a) statistic in the additive outlier model assuming the break 
point to be unknown. Also presented in Table 4 are the critical val
ues of the distributions of inb",\[J � w;(r)dw(r) (fJ w;(r)2dr)-1] for 
i = A, and C. These can be used with the minimal values of the Zeal 
statistics in Models A and C (provided equation (8) is used). These 
,are referred to as the limiting distribution of inf)",\T(a;(J\) -1) since 
'they correspond to the asymptotic distribution of the minimal nor
malized bias over all possible break points when the errors et are un
correlated. In the case of Models A and C, 8/ is constructed from the 
regression (8), and for Model B it is constructed from regression (2). 

(Received JUly 1993. Revised November 1993) 
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Mathematical Appendix 

We first note that the exact distributions of the statistics of in
terest are invariant to the parameters fl, {3, >-, and (J in (1.A)-(1.C). 
Therefore, without loss of generality, we derive the following asymp
totic results under the simplified data-generating process, where e" 
a finite order ARMA(p, q) process, is as defined in the text: 

y, = Y'-l + e,. (A.l) 

PROOF OF (3)-(4), MODEL A: Let 'iJf be the residuals from a pro
jection of y, on {I, t, DU,} (t = 1, ... , T). Straightforward algebra 
yields: 

(A.2) 

h -a -1 "To -b 
( )-1 "T w ere Y = Tb L...'=l y" Y = T - n L... ,=T.+1 y" A1 = 

Tb-1 L:i�l t, A2 � (T - n)-l L:i=T.+1 t, and c = {L:i=l ty, -
-a -b T 2 2 TbY A1 - (T - n)Y A2}{L:'=1 t - nA1 - (T - Tb)AD -1. We 

note the following convergence results that are easily obtained us-
ing results in P89: T-1/2ya ==?- (u/>-)J�w(r)dr, T-1/2yb 

==?
(u/(l- >-))JJw(r)dr, T-1A1 ==?- A/2, T-1A2 ==?- (1 + >-)/2, and 
T1/2C ==?- u"'l/gA, where gA and "'1 are as defined in P89 (Theo-
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rem 2). Using (A.1) and (A.2): 

fit - flt1 = et - c, (t f Td 1), 
(A.3) 

fit - flt-1 = et - c+ya - yb +(A2 - A1)C, (t= Tb+1). 

L t Y- AI (-A -A) y- AI (-A -A ) E' ( ) '1 e = Y2 ""'YT ' -1 = Yl ""'YT-l , = e2,· .. , eT , '2. = 
(1, 1, ... , 1), andD(TB) a(T - 1) by 1 vector with 1 ift= Tb+1 and 
o elsewhere. We can write (A.3) as: 

yA _ Y.:\ = E - ic+D(TB)(Y" - yb 
+(A2 - Adc). (A.4) 

Using this notation, we have 

Consider first the numerator of T( CiA - 1): 

T-1y!{(yA _ Y!l) = T-1Y!{(E _ ic+ D(TB)(ya _ yb 

+ (A2 - A1)C) 
= T-1yAI E + T-1/2-A (T-1/2ya _ T-1/2yb 

-1 YTb 
+ T-1(A2 - A1)T1/2c) + op(l). (A.5) 

Using results in PS9 (see also Zivot and Andrews (1992)), T-1Y!{E 
=} u2 HA/gA == u2 [JJ wA(r)dw(r) + 8]. Consider now the second 
term in (A.5) . Using (A.2), we have: 

T-1/2f1�b = T-1/2YTb - T-1/2ya _ T-1(Tb _ A1)T1/2C 
>. 

=} u[w(>.) - r1 Jw(r)dr - >'7f;1/(2gA)] == UMAi 
o 

T-1/2Y" _ T-1/2yb + T-1(A2 _ A1)T1/2C 
>. 1 

=} u[>.-l J w(r)dr - (1 - >.)-1 J w(r)dr + 7f;!/(29A)] 
o >. 

= u[D4/[>'(1- >.)] + 7f;!/(2gA)] == uLA, 
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where D4 is as defined in P89 (Theorem 2). Hence, 

T-1y!{(yA - Y.:\) = (72[HA/9A + LAMA] 
1 

== (72[J wA(r)dw(r) + 8 + LAMA]' 
o 

Consider now the denominator of (A.4). As in P89, we have: 

(A.6) 

This proves (3) , with i = A, using (A.4), (A.6) and (A.7). To prove 
(4) we only need to further derive the limit of 81 = T-1 z=i=2 u� 
with Ut the estimated residuals from (2). 

T 
81 = r-1 L.:;(Yt - aAyt1? 

t=2 
T T 

= r-1 L.:;(Yt - yt1)2 - r-12T(aA - 1)r-1 L.:; yt1 (yt - yt1) 
t=2 t=2 

T 
+r-1T2(aA - 1)2r-2 L.:;(Yt1)2 t=2 

T 
= T-1 L.:;(Yt - yt_1)2 + opel) 

t=2 
T 

= r-1 L.:;(et - c? + r-1rr - yb + (A2 - A1)C]2 + opel) 
t=2 

=} O"� + (72 L1. (A.8) 

The proof of (4), with i = A, follows using (A.6) through (A.8), 
nothing that t - A = T-1yAI(yA _ yA )/[82 T-2yAlyA ]1/2 " -1 -1 A -1 -1 . 
PROOF OF (3)-(4) FOR MODEL C: Let yf be the residuals from 
a projection of Vt on {l, t,DUt,DTt} (t = 1, ... , T). Straightforward 
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algebra yields: iif = Yt - ya - (t - AI)CI, if t :::; n, and iif = 
-b 

Yt - y - (t - A2)(CI + C2), if t > Tb, where [CI, C2]' = (Z 'Z)-IZ'Y* 
with: 

o 

n - AI 0 Z- , and Y*= - n + 1 - A2 Tb + 1 - A2 

T - A2 T - A2 

We can write: 

-a YI - Y 

-a YT. - Y 
-b 

YT.+1 - Y 

• -b 
YT -Y 

(A.lO) 

where D = ZIZ2 - Zi; ZI = L,�I t2 - >.TAr - (1 - >')TA�, 
Z2 = L,�=T.+I t2 - (1 - >')TA�, BI = L,�=I tYt - >'Tya Al - (1 -

-b T -b >.)TY A2, B2 = L,t=T.+1 tYt - (1 - >')TY A2. Using results in 
P89, we have: T-I Al -> >'/2, T-1 A2 -> (1 + >')/2, T-S/2 Bl =} 
u[Jt rw(r)dr - (>./2) It w(r)dr - (1/2)(1 + >.) 11 w(r)dr] == uDu, 
T-S/2 B2 = u[Jl rw(r)dr - (1/2)(1 + >.) 11 w(r)dr] == u[Du - D12] == 
-u.pS, T-3 ZI -> (1 - >.)3/12 + >.3/12, T-3 Z2 -> (1 - >.)3/12. Hence 
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T-6 D --> A3(1- A)3/144, 

Tl/2cl =? [A3(1_ A)3/144]-lCT[Du - (Du - D12)][(1 - A)3/12] 
= CT12D12/A3, 

Tl/2C2 =? [A3(1 - W /144]-lCT[-1/>s{(1- A)3/12 + A3/12} 
- Du (1 - A)3/12] 

= [A3(1 - A)3/144]-lCT[(Du - D12){(1 - A)3/12 
+ A3/12} - Du(1- A)3/12] 

= [A3(1 - A)3/144]-lCT[(Du - D12)A3/12 - D12(1 - A)3/12] 
= -CT12D12/A3 - CT121/>s/(1 - A)3 == -CT12D12/A3 - CT1/>5/g0, 

and Tl/2(Cl +C2) =? -CT1/>5/g0 where go, 1/>5 and D12 are defined in 
P89 (Theorem 2) (see also Perron (1992)). The first-differences are 
given by: 

-0 -0 t <l1 Yt - Yt-l = et - Cl, _ b, 
-a -b 

= et + Y -Y - (n + 1 - A2)(Cl + C2) + (Tb - Al)Cl, 
t = n+1, 

= et - (Cl + C2), t>  Tb + 1. 

Using a similar vector notation as before with the addition of DU' = 
. -0 -0 . (0, ... ,0,1, ... ,1) . Y - Y-l = E - Cl� - C2DU + qD(TB), where 

=<> -b q = Y -Y - (Tb - A2)(Cl + C2) + (Tb - Al)Cl' Consider first the 
numerator of the normalized least-squares estimator T(cP - 1): 

T-ly�{(yO _ y�) = T-lY�{[E - cli - c2DU + qD(TB)] 
= T-lY!?{E + T-l/2qT-l/2Yf. + op(1). 

Similar to model A, we have 

T-lY�{E =? CT2 Ho/go == CT2 fwo(r)dr(r) + 8. 
o 
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Also: 

T-1/2q = T-1/2y<' _ T-1/2yb 
_ T-1(Tb - A2)T1/2(C1 + C2) 

+ T-1(Tb - A1)T1/2C1 
A 1 

=> <7{,\-1 Jw(r)dr - (1 - ,\)-1 Jw(r)dr 
o A 

- (1 - :A)'1/Js/(2ge) + 6D12/,\2} 
= <7{D4/['\(1 - ,\)] - (1 - '\)'1/Js/(2ge) + 6D12/,\2} == <7Le; 

T-1/2f1fi.. = T-1/2YT. - T-1/2y<' - T-1(n - A1)T1/2C1 

Hence: 

A 
=> <7{W('\) - ,\-1 Jw(r)dr - 6D12/,\2} == <7Me. 

o 

T-1t!?{(ye - Y�l) => <72 {He/ge + LeMe} 
1 

== <72{Jwe(r)dw(r) + 8 + LeMe}. 
o (A.ll) 

The proof of (3), with i = C, follows using (A.ll) and T-2Y.:'{Y.:'1 
=> <72 Ke/ge == <72 J� we(r)2dr. Derivations analogous to those for 
Model A show that sb => <7; + <72 Lb. 
PROOF OF (5)-(6), MODEL B: Let fir be the residuals from a 
projection of Yt on {l, t, DTt}(t = 1, ... , T). Straightforward algebra 
yields: 

B -( +1 -. fit = Yt - y - t - tlca + t C4, t:5 n, 

fir = Yt - Y - (t - t)ca - (t  - n - t)C4' t > n, 
(A.12) 

h Y T-1 "T -t T-1 "T t -t· T-1 "T -T. N w ere = L...t=l Yt, = L...t=l ' = L...t=l t. ote 
that T-1/2y => <7 J� w(r)dr, T-11 => 1/2, T-1t => (1 - ,\)2/2. 
The variables Ca and C4 are defined by rCa, C4]' = (W'W)-l W'(y -Y) 
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1-t -* -t 

-t* 

1-t 

T - t  T - n -t 

We !lave T1/2C3 => - a,p3/gB and T1/2C4 => - a,p4/gB with gB, ,p3 
and ';"4 as defined in P89 (Theorem 2, see also Perron (1992». The 
first-differences are given by: 

-B -B '" Yt - Yt-1 = et - C3, t:::; .Lb, 

(A.13) 

or in vector notation: yB - y& = E - c3i - C4DU. Consider the 
numerator of T(aB -1): 

T-1y!!{(yB - y3t) = T-1Y!!{(E - c3i - C4DU) 
= T-1yBI E - T1/2C T-3/2yBI DU + 0 (1) -1 4 -1 P 

1 
=> a2{HB/gB + (,p4/gB) JWB(r)dr} 

>. 
1 1 

== a2{J wB(r)dw(r) +.5 + (,p4/gB) J wB(r)dr}. 
o >. 

This proves (5) nothing that 
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To prove (6), we simply need to show that s� -t a� . Using (A.13): 

T T 
s� = T-1 L,(Yf - &Byf-l)2 = T-1 L,(yf - yf-l 

t=2 t=2 
_ (&B _ 1 )Yf-l)2 

T � 
= T-1 L,(yf - yL)2 + op(l ) = T-1 L,(et - C3)2 

t=2 t=2 
T 

+T-1 L, (et - C3-c4)2 
t=Tb+l 

T 
= T-1 L, e� + op(1) -t a; , since C3 = Op(T-l/2 ) and 

t=2 
C4 = Op(T-l/2). 

PROOF OF (9)-(10): We prove the results for Model A only; the 
proof for Model C is entirely analogous and therefore omitted. Let 1J� t 
be the residuals from a regression of yf on D(TB}t(t = 2, ... , T) and 
let 1Jf,t-l be the residuals from a regression of iif-l on D(TB}t(t = 
2, ... ,T). We have, for t = 2, ... ,T : 1J�t = iif if t i= Tb + 1 and 0 
otherwise; 1Jf,t-l = iif-l if t i= Tb + 1 and 0 otherwise. Also, ii�t -
1Jft-l = et-C ift i= Tb+1 and 0 otherwise. The least-squares estimate 
a�d t-statistic from regression (8) are given by: 

T T 
T(·A 1) T-1"", vA (vA vA )/T-2 "",(vA )2 and 0: - = L.J Yl,t-l YO,t - Yl,t-l L.J Yl,t-I , 

t=2 t=2 
T T 

taA = T-1 L,1Jf,t-l (1J�t - 1Jf,t_l)/[s�r2 L,<Yf,t_l?11/2, 
t=2 t=2 
T 

where §� = rl L, u� 
t=2 

with ut the estimated residuals from (8). Consider first the numerator 
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of T(&A - 1): 

T T. 
T-1 '"' vA (vA vA ) T-1 ,", -A ( ) L.. Y1,t-1 YO,t - Y1,t-1 = L.. Yt-1 et - c 

t=2 t=2 
T 

+T-1 L iit.1(et - C) 
t;T;+2 

T 
= T-1 Liif-1(et - c) 

t=2 
1 -a 

- T- (YT; -Y - (n - A1)c)(eT.+l - C) 
T T 

= T-1 L iit.1 et + op(I) , using L iit = 0, 
t;2 t;l 

1 
=9 (J2 HA/gA == (J2 JWA(r)dr(r) + 8. 

o (A.14) 

Similarly the limit of the denominator of T( &A - 1) is given by: 

T T; T 
T-2 LWt,t-1)2 = y-2 L(iit_1)2 + T-2 L (jjt-1? 

t;2 t;2 t;T.+2 
T 

= T-2 ,",(-A )2 _ T-2(-A )2 L.. Yt-1 YT. 
t;2 
T 

= T-2 L(jjt.1)2 + op(l) 
t=2 

1 
=9 (J2KA/gA == (J2 JWA(r)2dr. 

o 
(A.15) 

This proves (9) using (A.14) and (A.15). To prove (10), we show that 
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T 82 = T-1 "'(y VA _ &AyvA )2 A L...J O,t l,t-l 
'=2 
T 

T-1 ",(vA vA (AA 1) vA )2 = L...J YO,t - Yl,t-l - a - Yl,t-l 
t=2 
T 

T-1 "'( vA vA )2 = � YO,t - Yl,t-l 
t=2 

T 
T-12T( AA 1)T-1 '" vA (vA vA ) - a - L..J Yl,'-l Yo" - Yl,'-l 

t=2 
T 

+ T-IT2(&A _1)2T-2 2:=(Yf,t-l)2 
t=2 

T 
= T-1 2:=(Y�, - yf,'_1)2 + op(l), in view (A.14), (A.15) and (9), 

t=2 
Tb T 

= T-1 2:=(e, -c)2 + T-1 2:= (e, -cj2 + op(l), using (A.13), 
t=2 t=Tb+2 

T 
= T-1 2:= eF + op(l), sincec = Op(T-1/2), 

'=2 
., . d -t a;, as requue . 
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Table 1. 
Percentage Points of the Distribution of t.;; Model B. 

A T 1.0% 2.5% 5.0% 10.0% 90.0% 

0.1 50 -4.30 -3.90 -3.58 -3.23 -1.28 

100 -4.15 -3.84 -3.58 -3.24 -1.30 

200 -4.07 -3.77 -3.48 -3.21 -1.27 

1000 -4.13 -3.81 -3.52 -3.22 -1.19 

00 -4.15 -3.81 -3.52 -3.23 -1.19 

0.2 50 -4.55 -4.12 -3.81 -3.47 -1.44 

100 -4.43 -4.11 -3.78 -3.46 -1.43 

200 -4.23 -3.97 -3.71 -3.40 -1.41 

1000 -4.34 -4.00 -3.71 -3.41 -1.36 

00 -4.34 -4.01 -3.72 -3.41 -1.35 

0.3 50 -4.67 -4.25 -3.95 -3.62 -1.59 

100 -4.54 -4.22 -3.92 -3.60 -1.60 

200 -4.32 -4.06 -3.80 -3.52 -1.56 

1000 -4.41 -4.09 -3.84 -3.54 -1.52 

00 -4.41 -4.14 -3.85 -3.54 -1.52 

0.4 50 -4.73 -4.34 -4.05 -3.71 -1.74 

100 -4.57 -4.23 -3.97 -3.65 -1.74 

200 -4.44 -4.12 -3.88 -3.57 -1.69 

1000 -4.46 -4.13 -3.90 -3.61 -1.69 

00 -4.48 -4.15 -3.91 -3.61 -1.69 
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95.0% 97.5% 

-1.01 -0.73 

-1.02 -0.76 

-0.98 -0.70 

-0.86 -0.56 

-0.85 -0.55 

-1.16 -0.88 

-1.16 -0.90 

-1.13 -0.84 

-1.02 -0.70 

-1.01 -0.70 

-1.32 -1.06 

-1.32 -1.07 

-1.28 -1.01 

-1.19 -0.88 

-1.19 -0.87 

-1.47 -1.22 

-1.47 -1.21 

-1.42 -1.17 

-1.35 -1.06 

-1.35 -1.06 

99.0% 

-0.43 

-0.45 

-0.37 

-0.24 

-0.22 

-0.61 

-0.58 

-0.49 

-0.35 

-0.33 

-0.77 

-0.73 

-0.65 

-0.54 

-0.53 

-0.94 

-0.91 

-0.86 

-0.68 

-0.68 
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Table 1-

Continua�ao. 

A T 1.0% 2.5% 5.0% 10.0% 90.0% 95.0% 97.5% 99.0% 

0.5 50 -4.77 -4.40 -4.09 -3.78 -1.85 -1.60 -1.38 -1.12 

100 -4.57 -4.27 -3.99 -3.69 -1.83 -1.58 -1.36 -1.10 

200 -4.47 -4.17 -3.91 -3.63 -1.80 -1.55 -1.32 -1.03 

1000 -4.48 -4.16 -3.92 -3.64 -1.79 -1.48 -1.20 -0.87 

00 -4.49 -4.17 -3.93 -3.65 -1.80 -1.47 -1.21 -0.85 

0.6 50 -4.76 -4.40 -4.10 -3.79 -1.90 -1.68 -1.47 -1.25 

100 -4.59 -4.31 -3.99 -3.69 -1.88 -1.67 -1.45 -1.23 

200 -4.45 -4.17 -3.92 -3.64 -1.85 -1.62 -1.40 -1.14 

1000 -4.48 -4.16 -3.93 -3.64 -1.85 -1.56 -1.30 -0.99 

00 -4.50 -4.18 -3.94 -3.65 -1.85 -1.56 -1.29 -0.96 

0.7 50 -4.78 -4.38 -4.08 -3.76 -1.89 -1.69 -1.52 -1.33 / 
100 -4.55 -4.24 -3.95 -3.65 -1.88 -1.67 -1.50 -1.31 

200 -4.43 -4.13 -3.89 -3.60 -1.83 -1.61 -1.43 -1.21 

1000 -4.45 -4.12 -3.90 -3.60 -1.83 -1.57 -1.35 -1.06 

00 -4.49 -4.13 -3.89 -3.60 -1.84 -1.57 -1.35 -1.06 

0.8 50 -4.71 -4.30 -3.99 -3.68 -1.84 -1.65 -1.50 -1.37 

100 -4.53 -4.17 -3.89 -3.57 -1.82 -1.62 -1.47 -1.30 

200 -4.42 -4.09 -3.82 -3.52 -1.79 -1.58 -1.42 -1.23 

1000 -4.39 -4.10 -3.84 -3.54 -1.76 -1.54 -1.34 -1.11 

00 -4.41 -4.09 -3.83 -3.55 -1.76 -1.53 -1.33 -1.11 

0.9 50 -4.55 -4.15 -3.84 -3.52 -1.80 -1.63 -1.50 -1.38 

100 -4.43 -4.08 -3.78 -3.47 -1.76 -1.58 -1.44 -1.30 

200 -4.28 -3.98 -3.70 -3.41 -1.72 -1.53 -1.40 -1.25 

1000 -4.28 -3.96 -3.72 -3.43 -1.66 -1.46 -1.29 -1.09 

00 -4.29 -3.95 -3.72 -3.42 -1.67 -1.45 -1.26 -1.06 
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Table 2. 
Percentage Points of the Asymptotic Distribution of T( a - 1) 

Two-step procedure for Model B. 

A 1.0% 2.5% 5.0% 10.0% 90.0% 95.0% 97.5% 99.0% 

0.1 -34.27 -29.24 -24.90 -21.00 -3.61 -2040 -1048 -0.59 

0.2 -37.02 -31.57 -27.45 -23.09 -4.44 -3.13 -2.04 -0.92 

0.3 -37.89 -33.10 -29.10 -24.55 -5041 -3.92 -2.70 -1.55 

004 -38.95 -33.48 -29.60 -25.33 -6.39 -4.69 -3.47 -2.09 

0.5 -38.80 -33.52 -29.94 -25.57 -6.99 -5.34 -3.99 -2.70 

0.6 -38.42 -33.84 -29.74 -25.57 -7.19 -5.52 -4.34 -3.01 

0.7 -38.02 -33.10 -28.97 -24.69 -6.77 -5.16 -4.09 -3.12 

0.8 -37.26 -32.05 -27.97 -23.79 -5.96 -4.68 -3.79 -2.87 

0.9 -35.19 -30.27 -26.07 -21.94 -5.16 -4.10 -3.37 -2.57 

Table 3. 
Percentage Points of the Asymptotic Distribution of inf'\EA t,,(-X). 

1.0% 2.5% 

-4.91 -4.62 

Two step procedure for Model B. 

5.0% 

-4.36 

10.0% 90.0% 95.0% 

-4.07 -2.32 -2.12 

Table 4. . 

97.5% 

-1.96 

Percentage Points of the Asymptotic Distribution 

of inf'\EA T(ai(-X) - 1). 

1.0% 2.5% 5.0% 10.0% 90.0% 95.0% 97.5% 

Model A -47.84 -42.51 -38.16 -33.87 -13.10 -11.36 -9.94 

Model B -46.54 -41.10 -36.51 -31.89 -10.18 -8.47 -7.12 

Model C -56.23 -50.11 -45.21 -40.17 -16.48 -14.39 -12.69 
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99.0% 

-1.78 

99.0% 

-8040 

-5.92 

-11.00 
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