A NOTE ON THE ASYMPTOTIC DISTRIBUTIONS OF UNIT ROOT TESTS IN THE ADDITIVE OUTLIER MODEL WITH BREAKS*

Pierre Perron**
Timothy J. Vogelsang***

Resumo

Este artigo discute testes para uma raíz unitária permitindo a possibilidade de uma quebra única no intercepto e/ou na inclinação da função de tendência do modelo de outlier aditivo discutido em Perron (1989). Detectamos e corrigimos um erro na função de distribuição assintótica do teste proposto neste caso. A modifícação feita nos permite construir uma estatística com a mesma distribuição assintótica da encontrada em Perron (1989). Discutimos, também, a propriedade de aproximaçōes assintóticas e várias extensōes onde o ponto de quebra é desconhecido.

Abstract

This note discusses tests for a unit root allowing the possibility of a onetime change in the intercept and/or the slope of the trend function in the additive outlier model considered in Perron (1989). We discuss and correct an error in the stated asymptotic distributions of the tests in this case. We propose a simple modification of the procedure which yields statistics having the same asymptotic distributions as stated in Perron (1989). We also discuss the adequacy of the asymptotic approximations and various extensions to the case where the breakpoint is unknown with corresponding asymptotic critical values.

Tests for a unit root allowing for the possible presence of a onetime change in the intercept and/or slope of a series were proposed by Perron (1989) (henceforth referred to as P89). He considered two general classes of models: a) the additive outlier model, appropriate

[^0][^1]when the change is sudden, and b) the innovational outlier model, appropriate when the change is gradual. In this note, we discuss an error in the treatment of the asymptotic distributions of the tests associated with the additive outlier model. We point out that the asymptotic distributions of these statistics are different than those stated in P89 and also that they depend on the correlation structure of the data when a change in intercept is involved, even if the appropriate order of the autoregression is used. Fortunately, in these cases, a simple modification is available which yields statistics having the same asymptotic distributions (invariant to nuisance parameters) as stated in P89. This transformation is discussed, as well as the asymptotic approximation that is related. We also discuss extensions to the case where the breakpoint is unknown and present corresponding asymptotic critical values.

The present note contains an extended discussion and proofs of assertions stated in Perron (1992). It covers cases dealing with trending data, where as Perron and Vogelsang (1992) cover similar corrections and extensions to Perron (1990) for the case of non-trending data. The case of trending data offers some interesting contrasts, especially when a change in slope is involved with both segments of the trend joined at the time of change. Here, the two-step method suggested in Perron (1989) is still valid. The asymptotic distributions are, however, different from those stated earlier for a known breakpoint and also different from the limiting distribution stated in Zivot and Andrews (1992) for an unknown breakpoint. We provide tabulated critical values, in this and other settings, that should be useful for applications.

1. The models and the statistics.

The additive outlier models allow for a sudden change in the intercept and/or slope of a series $\left\{y_{t}\right\}_{1}^{T}$, say, at time $T_{b}\left(1<T_{b}<T\right)$. Model A (the crash model) specifies a change in the intercept, model B a change in the slope (restricting the segments to be joined) and Model C allows for both a change in intercept and slope. The models
are specified, respectively, as (for $t=1, \ldots, T$):

$$
\begin{align*}
& y_{t}=\mu+\beta t+\gamma D U_{t}+Z_{t} \tag{1.A}\\
& y_{t}=\mu+\beta t+\theta D T_{t}^{*}+Z_{t} \tag{1.B}\\
& y_{t}=\mu+\beta t+\gamma D U_{t}+\theta D T_{t}+Z_{t} \tag{1.C}
\end{align*}
$$

where $D U_{t}=1, D T_{t}^{*}=t-T_{b}$ and $D T_{t}=t$ if $t>T_{b}$ and $D U_{t}=$ $D T_{t}^{*}=D T_{t}=0$ otherwise. The noise component Z_{t} is assumed to be a finite order ARMA (p, q) process of the form $A(L) Z_{t}=B(L) v_{t}\left(Z_{0}=\right.$ 0) with $v_{t} \sim i . i . d .\left(0, o_{v}^{2}\right)$ with finite fourth moment. It is assumed that all the roots of $B(z)=0$ are strictly outside the unit circle and that the polynomial $A(z)=0$ has at most one root on the unit circle with all others strictly outside. Denote by α the sum of the autoregressive coefficients, $1-A(1)$, and write $A(L)=(1-\alpha L) A^{*}(L)$. Under the null hypothesis $\alpha=1$, and under the alternative hypothesis $\alpha<1$. Using this notation, we can write $Z_{t}=\alpha Z_{t-1}+e_{t}$ where $e_{t}=A^{*}(L)^{-1} B(L) v_{t}$.

Let $\left\{\tilde{y}_{t}^{i} ; i=A, B, C\right\}$ be the residuals from a regression of y_{t} on $\left\{1, t, D U_{t}\right\}(i=A),\left\{1, t, D T_{t}^{*}\right\}(i=B),\left\{1, t, D U_{t}, D T_{t}\right\}(i=C)$. The tests based on the additive outlier models from P89 are the normalized bias $T\left(\bar{\alpha}^{i}-1\right)$ and the t-statistic for testing the null hypothesis $\alpha=1$, denoted by $t_{\bar{\alpha}} i$, in the following second step regression:

$$
\begin{equation*}
\tilde{y}_{t}^{i}=\tilde{\alpha}^{i} \tilde{y}_{t-1}^{i}+\tilde{u}_{t}^{i}, \quad(i=A, B, C) \quad t=2, \ldots, T . \tag{2}
\end{equation*}
$$

2. The limiting distributions.

Let $w_{i}(r)$ be the projection residual of a Wiener process $w(r)$ on the subspace generated by the functions $\{1, r, d u(r)\}(i=A)$, $\left\{1, r, d r^{*}(r)\right\}(i=B)$ and $\{1, r, d u(r), d r(r)\}(i=C)$ where $d u(r)=1$, $d r^{*}(r)=r-\lambda, d r(r)=r$ if $r>\lambda$ and $d u(r)=d r^{*}(r)=d r(r)=0$ otherwise. Here, $\lambda=\left[T_{b} / T\right]$ is the ratio of pre-break sample size to total samplesize. Denoting by " \Longrightarrow " weak convergence in distribution, the limiting distributions of $T\left(\tilde{\alpha}^{i}-1\right)$ and $t_{\bar{\alpha}} i$ are, instead of those stated in Theorem 2 of P 89 (with $g_{i}(i=A, B, C), \psi_{1}, \psi_{4}, \psi_{5}, D_{4}$ and D_{12} as defined in that Theorem, see also Perron (1992) where g_{B} and g_{C} are
correctly stated to be defined by $g_{B}=\lambda^{3} / 3$ and $\left.g_{C}=(1-\lambda)^{3} / 12\right)$:

$$
\begin{align*}
T\left(\tilde{\alpha}^{i}-1\right) \Longrightarrow & {\left[\int_{0}^{1} w_{i}(r) d w(r)+\delta+L_{i} M_{i}\right]\left[\int_{0}^{1} w_{i}(r)^{2} d r\right]^{-1} } \\
t_{\tilde{\alpha}} i \Longrightarrow & {\left[\int_{0}^{1} w_{i}(r) d w(r)+\delta+L_{i} M_{i}\right] } \tag{3}\\
& {\left[\left(\sigma_{e}^{2} / \sigma^{2}+L_{i}^{2}\right) \int_{0}^{1} w_{i}(r)^{2} d r\right]^{-1 / 2} } \tag{4}
\end{align*}
$$

for $i=A, C$, where $L_{A}=D_{4} /[(1-\lambda) \lambda]+\psi_{1} /\left(2 g_{A}\right), M_{A}=w(\lambda)-$ $\cdot \lambda^{-1} \int_{0}^{\lambda} w(r) d r-\lambda \psi_{1} /\left(2 g_{A}\right), L_{C}=D_{4} /[(1-\lambda) \lambda]+6 D_{12} / \lambda^{2}-(1-$ $\lambda) \psi_{5} /\left(2 g_{C}\right), M_{C}=w(\lambda)-\lambda^{-1} \int_{0}^{\lambda} w(r) d r-6 D_{12} / \lambda^{2}$. Also $\delta=\left(\sigma^{2}-\right.$ $\left.\sigma_{e}^{2}\right) / 2 \sigma^{2}$ where $\sigma^{2}=\lim _{T \rightarrow \infty} T^{-1} E\left[S_{T}^{2}\right]$ with $S_{T}=\sum_{t=1}^{T} e_{t}$ and $\sigma_{e}^{2}=$ $\lim _{T \rightarrow \infty} T^{-1} \sum_{t=1}^{T} E\left(e_{t}^{2}\right)$. For Model B:

$$
\begin{align*}
T\left(\tilde{\alpha}^{B}-1\right) \Longrightarrow & {\left[\int_{0}^{1} w_{B}(r) d w(r)+\delta+\left(\psi_{4} / g_{B}\right) \int_{\lambda}^{1} w_{B}(r) d r\right] } \\
& {\left[\int_{0}^{1} w_{B}(r)^{2} d r\right]^{-1}, } \tag{5}\\
t_{\tilde{\alpha}} B \Longrightarrow & \left(\sigma / \sigma_{e}\right)\left[\int_{0}^{1} w_{B}(r) d w(r)+\delta+\left(\psi_{4} / g_{B}\right) \int_{\lambda}^{1} w_{B}(r) d r\right] \\
& {\left[\int_{0}^{1} w_{B}(r)^{2} d r\right]^{-1 / 2} . } \tag{6}
\end{align*}
$$

All proofs are in the Appendix. Consider first results pertaining to Models A and C. The limiting distributions in (3) and (4) are free of nuisance parameters when the errors e_{t} are uncorrelated (in which case $\sigma_{e}=\sigma$) and percentage points could be tabulated. There are two problems with this approach. One is that the Phillips-Perron (1988) nonparametric correction is different and more complex than that stated in Section 4.1 of P89. More importantly, it can be shown that the use of the augmented regression:

$$
\begin{equation*}
\tilde{y}_{t}^{i}=\dot{\hat{\alpha}}^{i} \tilde{y}_{t-1}^{i}+\sum_{j=1}^{k} \hat{c}_{j} \Delta \tilde{y}_{t-j}^{i}+\hat{u}_{t} \tag{7}
\end{equation*}
$$

does not eliminate the dependency of the t-statistic on nuisance parameters even when Z_{t} is an autoregressive process of known order. There is, however, a simple way to modify the second step regression (2) to avoid these problems. Consider first the modification:

$$
\begin{equation*}
\tilde{y}_{t}^{i}=\hat{\omega}^{i} D(T B)_{t}+\hat{\alpha}^{i} \tilde{y}_{t-1}^{i}+\hat{u}_{t}^{i} . \quad(i=A, C) \quad(t=2, \ldots, T) \tag{8}
\end{equation*}
$$

Let $t_{\hat{\alpha}} i$ be the t-statistic for testing $\alpha^{i}=1$ in (8). It is shown in the Appendix that:

$$
\begin{align*}
T\left(\hat{\alpha}^{i}-1\right) & \Longrightarrow\left(\int_{0}^{1} w_{i}(r) d w(r)+\delta\right)\left(\int_{0}^{1} w_{i}(r)^{2} d r\right)^{-1}, \quad(i=A, C) \tag{9}\\
t_{\hat{\alpha}} i & \Longrightarrow\left(\sigma / \sigma_{e}\right)\left(\int_{0}^{1} w_{i}(r) d w(r)+\delta\right)\left(\int_{0}^{1} w_{i}(r)^{2} d r\right)^{-1 / 2} . \quad(i=A, C) \tag{10}
\end{align*}
$$

Hence, if the one-time dummy $D(T B)_{t}$ is included in the second step regression, the asymptotic distributions of the statistics are the same as those stated in P89, and in particular, the same as those associated with the innovational outlier model (regressions (12) and (14) in P89), When the errors are martingales differences $\sigma=\sigma_{e}$ and hence $\delta=0$. In that case the limiting distributions stated in (9) and (10) are invariant to nuisance parameters. Critical values are given in Table $4(\mathrm{~A}, \mathrm{~B})$ and $6(\mathrm{~A}, \mathrm{~B})$ of P89.

Consider now the case of Model B. Here things are different. First, the limiting distributions are different from the innovational outlier case only insofar as an extra term (independent of nuisance parameters) is present in the numerator. Hence, on the one hand, the application of the Phillips-Perron transformations (as discussed in section 4.1 of P 89) is still valid provided the asymptotic distribution in (8) and (9) with $\sigma_{e}=\sigma$ are used. Also, contrary to the case with Models A and C, the limiting distribution of the t-statistic, obtained using the augumented regression (7), is given by (6) with $\sigma_{e}=\sigma$ when the noise component is an autoregression.

Hence, the critical values of the limiting distributions (5) and (6) with $\sigma_{e}=\sigma$ can be used for inference purposes. These are different
from those stated in P89 and are tabulated in Perron (1992). Table 1 reproduces the asymptotic distribution of $t_{\hat{\mathrm{a}}} B$ and reports finite sample critical values to assess the adequacy of the asymptotic approximation (the data-generating process used being a random walk with $N(0,1)$ innovations and initial condition set at zero; 10,000 replications are used). The approximation is seen to be adequate for common sample sizes. Comparing the results with those in Tables 5.A and 5.B of P89, it is seen that the differences in the asymptotic distributions are mainly in the right tail, the left tail being very similar. Furthermore, the corrected asymptotic distribution is, unlike the other cases, clearly asymmetric around $\lambda=0.5$ (again, especially given the behavior of the distribution in the right tail).

3. Extensions to more general error processes.

Consider first the case of model B. Applying the augumented regression (7) when the DGP is an $\operatorname{AR}(p)$ with a unit root leads to a t-statistic with an asymptotic distribution equivalent to that stated in (6) with $\sigma_{e}=\sigma$ (details of the proof are available on request). Hence, the limiting distribution is different from that tabulated in P89 but is otherwise free of nuisance parameters, and the appropriate critical values are those in Table 1 of this note. Similarly the corresponding Phillips-Perron $Z\left(t_{\tilde{\alpha}}\right)$ and $Z(\tilde{\alpha})$ statistics are still valid if the asymptotic critical values in Tables 1 and 2 of this note are used.

Consider now the transformations to (8), for Models A and C, necessary for the limiting distributions of the tests to be invariant to nuisance parameters when Z_{t} is an $\operatorname{ARMA}(\mathrm{p}, \mathrm{q})$. First, the extensions of the Phillips and Perron (1988) statistics, discussed in Section 4.1 of P 89 , remain valid provided $\tilde{\alpha}^{i}$ and $t_{\bar{\alpha}} i$ in equations (6) and (7) of P89 are replaced by \hat{a}^{i} and $t_{\hat{\alpha}} i$ from (8) above (similarly $\tilde{\sigma}^{2}$ and $\tilde{\sigma}_{e}^{2}$ need to be replaced by estimators based on the residuals from that regression). The asymptotic critical values are still those in Table 4.A-B and 6.A-B of P89. Secondly, the Said-Dickey (1984) extension, discussed in Section 4.1 of P89, remains valid for Models A and C provided the augmented regression (7) is replaced by:

$$
\begin{equation*}
\tilde{y}_{t}^{i}=\sum_{j=0}^{k} \hat{\omega}_{j} D(T B)_{t-j}+\hat{\alpha}^{i} \tilde{y}_{t-1}^{i}+\sum_{j=1}^{k} \hat{c}_{j} \Delta \tilde{y}_{t-j}^{i}+\hat{u}_{t},(i=A, C) \tag{11}
\end{equation*}
$$

The introduction of the dummies $\left\{D(T B)_{t-j}\right\}_{j=0}^{k}$ makes the asymptotic distribution of the t-statistic for $\alpha=1$ in (11), $t_{\hat{\alpha}} i$, be that stated in (10) with $\sigma=\sigma_{e}$. The introduction of these dummies is sufficient to correct the problems discussed above for the additive outlier model and the critical values in Tables 4.B and 6.B of P89 are appropriate.

4. Extensions to unknown break points.

Several recent studies have considered extensions of the tests proposed in P89 to the case where the break point is unknown (see Banerjee, Lumsdaine and Stock (1992), Zivot and Andrews (1992) and Perron (1991)). Among the tests considered in these papers are minimal t-statistics obtained over all possible break points, i.e. $t_{\hat{\alpha}} i(\inf) \equiv \inf _{\lambda \epsilon \Lambda} t_{\hat{\alpha}} i(\lambda)$ where $t_{\hat{\alpha}} i(\lambda)$ is the t-statistic for testing $\alpha=$ 1 in model i with a break point fixed at $[\lambda T]$ and Λ is a closed subset of the interval (0,1). Using results in Zivot and Andrews (1992), the limiting distribution of the minimal t-statistic from Model B (regression (7)) is:

$$
\begin{align*}
t_{\hat{\alpha}} B(\mathrm{inf}) \Longrightarrow & \inf _{\lambda \epsilon \Lambda}\left\{\left[\int_{0}^{1} w_{B}(r) d w(r)+\left(\psi_{4} / g_{B}\right) \int_{\lambda}^{1} w_{B}(r) d r\right]\right. \\
& {\left.\left[\int_{0}^{1} w_{B}(r)^{2} d r\right]^{-1 / 2}\right\} . } \tag{12}
\end{align*}
$$

Tabulated critical values of the asymptotic distribution in (12) are presented in Table 3. These are obtained using simulation methods with a grid of 1,000 values for λ and 50,000 replications. The critical values of the corresponding asymptotic distributions of the t-statistics associated with Models A and C are presented in Zivot and Andrews (1992). Note that Table 3 of Zivot and Andrews (1992) does not provide the asymptotic distribution of $t_{\hat{\alpha}} B$ (inf) as obtained from regression (7). They use a one step procedure which does not permit the change in slope to be present under the null hypothesis.

For completeness Table 4 gives the asymptotic critical values of the distribution of $\inf _{\lambda \epsilon \Lambda}\left(\int_{0}^{1} w_{B}(r) d w(r)+\left(\psi_{4} / g_{B}\right) \int_{\lambda}^{1} w_{B}(r) d r\right]$ $\left[\int_{0}^{1} w_{B}(r)^{2} d r\right]^{-1}$, for Model B. These critical values can be used when
considering the minimal value (over all break points) of the PhillipsPerron $Z(\bar{\alpha})$ statistic in the additive outlier model assuming the break point to be unknown. Also presented in Table 4 are the critical values of the distributions of $\inf _{\lambda \epsilon \Lambda}\left[\int_{0}^{1} w_{i}(r) d w(r)\left(\int_{0}^{1} w_{i}(r)^{2} d r\right)^{-1}\right]$ for $i=A$, and C. These can be used with the minimal values of the $Z(\bar{\alpha})$ statistics in Models A and C (provided equation (8) is used). These are referred to as the limiting distribution of $\inf _{\lambda \epsilon \Lambda} T\left(\hat{\alpha}^{i}(\lambda)-1\right)$ since they correspond to the asymptotic distribution of the minimal normalized bias over all possible break points when the errors e_{t} are uncorrelated. In the case of Models A and C, $\hat{\alpha}^{i}$ is constructed from the regression (8), and for Model B it is constructed from regression (2).
(Received July 1993. Revised November 1993)

References

Banerjee, A., R.L. Lumsdaine, \& J.H. Stock 1992. "Recursive and sequential tests of the unit root hypotheses: theory and international evidence." Journal of Business and Economic Statistics 10:271-287.
Perron, P. 1989. "The great crash, the oil price shock and the unit root hypothesis." Econometrica 57:1361-1401.
Perron, P. 1990. "Testing for a unit root in a time series with a changing mean." Journal of Business and Economic Statistics 8: 153-162.
Perron, P. 1991. "Further evidence of breaking trend function in macroeconomic time series." In Econometric Research Program Memorandum № 350. Princeton: Princeton University.
Perron, P. 1992. "The great crash, the oil price shock and the unit root hypothesis: erratum." Forthcoming in Econometrica.
Perron, P., \& T.J. Vogelsang 1992. "Testing for a unit root in a time series with a changing mean: corrections and extensions." Journal os Business and Economic Statistics 10:467-470.
Phillips, P.C.B., \& P. Perron 1988. "Testing for a unit root in time series regression." Biometrika 75:335-346.
Said, S.E., \& D.A. Dickey 1984. "Testing for unit roots in autore-gressive-moving average models of unknown order." Biometrika

Perron, Vogelsang

71: 599-608.
Zivot, E., \& D.W.K. Andrews 1992. "Further evidence on the great crash, the oil price shock and the unit root hypothesis." Journal of Business and Economic Statistics 10:251-270.

Mathematical Appendix

We first note that the exact distributions of the statistics of interest are invariant to the parameters μ, β, λ, and θ in (1.A)-(1.C). Therefore, without loss of generality, we derive the following asymptotic results under the simplified data-generating process, where e_{t}, a finite order ARMA(p, q) process, is as defined in the text:

$$
\begin{equation*}
y_{t}=y_{t-1}+e_{t} \tag{A.1}
\end{equation*}
$$

Proof of (3)-(4), Model A: Let \tilde{y}_{t}^{A} be the residuals from a projection of y_{t} on $\left\{1, t, D U_{t}\right\}(t=1, \ldots, T)$. Straightforward algebra yields:

$$
\begin{array}{ll}
\tilde{y}_{t}^{A}=y_{t}-\bar{Y}^{a}-\left(t-A_{1}\right) c, & t \leq T_{b}, \tag{A.2}\\
\tilde{y}_{t}^{A}=y_{t}-\bar{Y}^{b}-\left(t-A_{2}\right) c, & t>T_{b},
\end{array}
$$

where $\bar{Y}^{a}=T_{b}^{-1} \sum_{t=1}^{T_{b}} y_{t}, \bar{Y}^{b}=\left(T-T_{b}\right)^{-1} \sum_{t=T_{b}+1}^{T} y_{t}, A_{1}=$ $T_{b}^{-1} \sum_{t=1}^{T_{b}} t, A_{2}=\left(T-T_{b}\right)^{-1} \sum_{t=T_{b}+1}^{T} t$, and $c=\left\{\sum_{t=1}^{T} t y_{t}-\right.$ $\left.T_{b} \bar{Y}^{a} A_{1}-\left(T-T_{b}\right) \bar{Y}^{b} A_{2}\right\}\left\{\sum_{t=1}^{T} t^{2}-T_{b} A_{1}^{2}-\left(T-T_{b}\right) A_{2}^{2}\right\}^{-1}$. We note the following convergence results that are easily obtained using results in P89: $T^{-1 / 2} \bar{Y}^{a} \Longrightarrow(\sigma / \lambda) \int_{0}^{\lambda} w(r) d r, T^{-1 / 2} \bar{Y}^{b} \Longrightarrow$ $(\sigma /(1-\lambda)) \int_{\lambda}^{1} w(r) d r, T^{-1} A_{1} \Longrightarrow \lambda / 2, T^{-1} A_{2} \Longrightarrow(1+\lambda) / 2$, and $T^{1 / 2} c \Longrightarrow \sigma \psi_{1} / g_{A}$, where g_{A} and ψ_{1} are as defined in P89 (Theo-
rem 2). Using (A.1) and (A.2):

$$
\begin{align*}
& \tilde{y}_{t}^{A}-\tilde{y}_{t-1}^{A}=e_{t}-c, \quad\left(t \neq T_{b}+1\right), \\
& \tilde{y}_{t}^{A}-\tilde{y}_{t-1}^{A}=e_{t}-c+\bar{Y}^{a}-\bar{Y}^{b}+\left(A_{2}-A_{1}\right) c, \quad\left(t=T_{b}+1\right) . \tag{A.3}
\end{align*}
$$

Let $\tilde{Y}^{A \prime}=\left(\tilde{y}_{2}^{A}, \ldots, \tilde{y}_{T}^{A}\right), \tilde{Y}_{-1}=\left(\tilde{y}_{1}^{A}, \ldots, \tilde{y}_{T-1}^{A}\right), E^{\prime}=\left(e_{2}, \ldots, e_{T}\right), i^{\prime}=$ $(1,1, \ldots, 1)$, and $D(T B)$ a ($T-1$) by 1 vector with 1 if $t=T_{b}+1$ and 0 elsewhere. We can write (A.3) as:

$$
\begin{equation*}
\tilde{Y}^{A}-\tilde{Y}_{-1}^{A}=E-i c+D(T B)\left(\bar{Y}^{a}-\bar{Y}^{b}+\left(A_{2}-A_{1}\right) c\right) \tag{A.4}
\end{equation*}
$$

Using this notation, we have

$$
T\left(\tilde{\alpha}^{A}-1\right)=T^{-1} \tilde{Y}_{-1}^{A \prime}\left(\tilde{Y}^{A}-\tilde{Y}_{-1}^{A}\right) / T^{-2} \tilde{Y}_{-1}^{A \prime} \tilde{Y}_{-1}^{A_{1}^{\prime}} \tilde{Y}_{-1}^{A}
$$

Consider first the numerator of $T\left(\tilde{\alpha}^{A}-1\right)$:

$$
\begin{align*}
T^{-1} \tilde{Y}_{-1}^{A^{\prime}}\left(\tilde{Y}^{A}-\tilde{Y}_{-1}^{A}\right)= & T^{-1} \tilde{Y}_{-1}^{A^{\prime}}\left(E-i c+D(T B)\left(\bar{Y}^{a}-\bar{Y}^{b}\right.\right. \\
& \left.+\left(A_{2}-A_{1}\right) c\right) \\
= & T^{-1} \tilde{Y}_{-1}^{A^{\prime}} E+T^{-1 / 2} \tilde{y}_{T_{b}}^{A}\left(T^{-1 / 2} \bar{Y}^{a}-T^{-1 / 2} \bar{Y}^{b}\right. \\
& \left.+T^{-1}\left(A_{2}-A_{1}\right) T^{1 / 2} c\right)+o_{p}(1) . \tag{A.5}
\end{align*}
$$

Using results in P 89 (see also Zivot and Andrews (1992)), $T-1 \tilde{Y}_{-1}^{A^{\prime}} E$ $\Longrightarrow \sigma^{2} H_{A} / g_{A} \equiv \sigma^{2}\left[\int_{0}^{1} w_{A}(r) d w(r)+\delta\right]$. Consider now the second term in (A.5). Using (A.2), we have:

$$
\begin{aligned}
T^{-1 / 2} \tilde{y}_{T_{b}}^{A} & =T^{-1 / 2} y_{T_{b}}-T^{-1 / 2} \bar{Y}^{a}-T^{-1}\left(T_{b}-A_{1}\right) T^{1 / 2} c \\
& \Longrightarrow \sigma\left[w(\lambda)-\lambda^{-1} \int_{0}^{\lambda} w(r) d r-\lambda \psi_{1} /\left(2 g_{A}\right)\right] \equiv \sigma M_{A} ; \\
T^{-1 / 2} \bar{Y}^{a} & -T^{-1 / 2} \bar{Y}^{b}+T^{-1}\left(A_{2}-A_{1}\right) T^{1 / 2} c \\
& \Longrightarrow \sigma\left[\lambda^{-1} \int_{0}^{\lambda} w(r) d r-(1-\lambda)^{-1} \int_{\lambda}^{1} w(r) d r+\psi_{1} /\left(2 g_{A}\right)\right] \\
& =\sigma\left[D_{4} /[\lambda(1-\lambda)]+\psi_{1} /\left(2 g_{A}\right)\right] \equiv \sigma L_{A},
\end{aligned}
$$

Perron, Vogelsang

where D_{4} is as defined in P89 (Theorem 2). Hence,

$$
\begin{align*}
T^{-1} \tilde{Y}_{-1}^{A_{1}}\left(\tilde{Y}^{A}-\tilde{Y}_{-1}^{A}\right) & \Longrightarrow \sigma^{2}\left[H_{A} / g_{A}+L_{A} M_{A}\right] \\
& \equiv \sigma^{2}\left[\int_{0}^{1} w_{A}(r) d w(r)+\delta+L_{A} M_{A}\right] \tag{A.6}
\end{align*}
$$

Consider now the denominator of (A.4). As in P89, we have:

$$
\begin{equation*}
T^{-2} \tilde{Y}_{-1}^{A} \tilde{Y}_{-1}^{A} \Longrightarrow \sigma^{2} K_{A} / g_{A} \equiv \sigma^{2} \int_{0}^{1} w_{A}(r)^{2} d r \tag{A.7}
\end{equation*}
$$

This proves (3), with $i=A$, using (A.4), (A.6) and (A.7). To prove (4) we only need to further derive the limit of $\tilde{s}_{A}^{2}=T^{-1} \sum_{t=2}^{T} \bar{u}_{t}^{2}$ with \tilde{u}_{t} the estimated residuals from (2).

$$
\begin{align*}
\tilde{s}_{A}^{2}= & T^{-1} \sum_{t=2}^{T}\left(\tilde{y}_{t}^{A}-\tilde{\alpha}^{A} \tilde{y}_{t-1}^{A}\right)^{2} \\
= & T^{-1} \sum_{t=2}^{T}\left(\tilde{y}_{t}^{A}-\tilde{y}_{t-1}^{A}\right)^{2}-T^{-1} 2 T\left(\tilde{\alpha}^{A}-1\right) T^{-1} \sum_{t=2}^{T} \tilde{y}_{t-1}^{A}\left(\tilde{y}_{t}^{A}-\tilde{y}_{t-1}^{A}\right) \\
& +T^{-1} T^{2}\left(\tilde{\alpha}^{A}-1\right)^{2} T^{-2} \sum_{t=2}^{T}\left(\tilde{y}_{t-1}^{A}\right)^{2} \\
= & T^{-1} \sum_{t=2}^{T}\left(\tilde{y}_{t}^{A}-\tilde{y}_{t-1}^{A}\right)^{2}+o_{p}(1) \\
= & T^{-1} \sum_{t=2}^{T}\left(e_{t}-c\right)^{2}+T^{-1}\left[\bar{Y}^{a}-\bar{Y}^{b}+\left(A_{2}-A_{1}\right) c\right]^{2}+o_{p}(1) \\
\Longrightarrow & \sigma_{e}^{2}+\sigma^{2} L_{A}^{2} . \tag{A.8}
\end{align*}
$$

The proof of (4), with $i=A$, follows using (A.6) through (A.8), nothing that $t_{\tilde{\alpha}} A=T^{-1} \tilde{Y}_{-1}^{A_{1}^{\prime}}\left(\tilde{Y}^{A}-\tilde{Y}_{-1}^{A}\right) /\left[\tilde{s}_{A}^{2} T^{-2} \tilde{Y}_{-1}^{A_{1}^{\prime}} \tilde{Y}_{-1}^{A}\right]^{1 / 2}$.
PROOF OF (3)-(4) FOR MODEL C: Let \tilde{y}_{t}^{G} be the residuals from a projection of y_{t} on $\left\{1, t, D U_{t}, D T_{t}\right\}(t=1, \ldots, T)$. Straightforward
algebra yields: $\tilde{y}_{t}^{C}=y_{t}-\bar{Y}^{a}-\left(t-A_{1}\right) c_{1}$, if $t \leq T_{b}$, and $\tilde{y}_{t}^{C}=$ $y_{t}-Y^{b}-\left(t-A_{2}\right)\left(c_{1}+c_{2}\right)$, if $t>T_{b}$, where $\left[c_{1}, c_{2}\right]^{\prime}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} Y^{*}$ with:

$$
Z=\left[\begin{array}{cc}
1-A_{1} & 0 \tag{A.10}\\
\vdots & \vdots \\
T_{b}-A_{1} & 0 \\
T_{b}+1-A_{2} & T_{b}+1-A_{2} \\
\vdots & \vdots \\
T-A_{2} & T-A_{2}
\end{array}\right], \quad \text { and } \quad Y^{*}=\left[\begin{array}{c}
y_{1}-\bar{Y}^{a} \\
\vdots \\
y_{T_{b}}-\bar{Y}^{a} \\
y_{T_{b}+1}-\bar{Y}^{b} \\
\vdots \\
y_{T}-\bar{Y}^{b}
\end{array}\right]
$$

We can write:

$$
\begin{aligned}
{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] } & =D^{-1}\left[\begin{array}{c}
\left(B_{1}-B_{2}\right) Z_{2} \\
B_{2} Z_{1}-B_{1} Z_{2}
\end{array}\right], \text { with } Z^{\prime} Z \equiv\left[\begin{array}{ll}
Z_{1} & Z_{2} \\
Z_{2} & Z_{2}
\end{array}\right], Z^{\prime} Y^{*} \\
& =\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]
\end{aligned}
$$

where $D=Z_{1} Z_{2}-Z_{2}^{2} ; Z_{1}=\sum_{t=1}^{T} t^{2}-\lambda T A_{1}^{2}-(1-\lambda) T A_{2}^{2}$, $Z_{2}=\sum_{t=T_{b}+1}^{T} t^{2}-(1-\lambda) T A_{2}^{2}, B_{1}=\sum_{t=1}^{T} t y_{t}-\lambda T \bar{Y}^{a} A_{1}-(1-$ d) $T \bar{Y}^{b} A_{2}, B_{2}=\sum_{t=T_{b}+1}^{T} t y_{t}-(1-\lambda) T \bar{Y}^{b} A_{2}$. Using results in P89, we have: $T^{-1} A_{1} \rightarrow \lambda / 2, T^{-1} A_{2} \rightarrow(1+\lambda) / 2, T^{-5 / 2} B_{1} \Longrightarrow$ $\sigma\left[\int_{0}^{1} r w(r) d r-(\lambda / 2) \int_{0}^{\lambda} w(r) d r-(1 / 2)(1+\lambda) \int_{\lambda}^{1} w(r) d r\right] \equiv \sigma D_{11}$, $T^{-5 / 2} B_{2}=\sigma\left[\int_{\lambda}^{1} r w(r) d r-(1 / 2)(1+\lambda) \int_{\lambda}^{1} w(r) d r\right] \equiv \sigma\left[D_{11}-D_{12}\right] \equiv$ $-\sigma \psi_{5}, T^{-3} Z_{1} \rightarrow(1-\lambda)^{3} / 12+\lambda^{3} / 12, T^{-3} Z_{2} \rightarrow(1-\lambda)^{3} / 12$. Hence

$$
\begin{aligned}
T^{-6} D \rightarrow & \lambda^{3}(1-\lambda)^{3} / 144, \\
T^{1 / 2} c_{1} \Longrightarrow & {\left[\lambda^{3}(1-\lambda)^{3} / 144\right]^{-1} \sigma\left[D_{11}-\left(D_{11}-D_{12}\right)\right]\left[(1-\lambda)^{3} / 12\right] } \\
= & \sigma 12 D_{12} / \lambda^{3}, \\
T^{1 / 2} c_{2} \Longrightarrow & {\left[\lambda^{3}(1-\lambda)^{3} / 144\right]^{-1} \sigma\left[-\psi_{5}\left\{(1-\lambda)^{3} / 12+\lambda^{3} / 12\right\}\right.} \\
& \left.\quad-D_{11}(1-\lambda)^{3} / 12\right] \\
= & {\left[\lambda^{3}(1-\lambda)^{3} / 144\right]^{-1} \sigma\left[(D _ { 1 1 } - D _ { 1 2 }) \left\{(1-\lambda)^{3} / 12\right.\right.} \\
& \left.\left.+\lambda^{3} / 12\right\}-D_{11}(1-\lambda)^{3} / 12\right] \\
= & {\left[\lambda^{3}(1-\lambda)^{3} / 144\right]^{-1} \sigma\left[\left(D_{11}-D_{12}\right) \lambda^{3} / 12-D_{12}(1-\lambda)^{3} / 12\right] } \\
= & -\sigma 12 D_{12} / \lambda^{3}-\sigma 12 \psi_{5} /(1-\lambda)^{3} \equiv-\sigma 12 D_{12} / \lambda^{3}-\sigma \psi_{5} / g_{C},
\end{aligned}
$$

and $T^{1 / 2}\left(c_{1}+c_{2}\right) \Longrightarrow-\sigma \psi_{5} / g_{C}$ where g_{C}, ψ_{5} and D_{12} are defined in P89 (Theorem 2) (see also Perron (1992)). The first-differences are given by:

$$
\begin{aligned}
\tilde{y}_{t}^{C}-\tilde{y}_{t-1}^{C}= & e_{t}-c_{1}, \quad t \leq T_{b} \\
= & e_{t}+\bar{Y}^{a}-\bar{Y}^{b}-\left(T_{b}+1-A_{2}\right)\left(c_{1}+c_{2}\right)+\left(T_{b}-A_{1}\right) c_{1} \\
& \quad t=T_{b}+1, \\
= & e_{t}-\left(c_{1}+c_{2}\right), t>T_{b}+1
\end{aligned}
$$

Using a similar vector notation as before with the addition of $D U^{\prime}=$ $(0, \ldots, 0,1, \ldots, 1): \tilde{Y}^{C}-\tilde{Y}_{-1}^{C}=E-c_{1} i-c_{2} D U+q D(T B)$, where $q=\bar{Y}^{a}-\bar{Y}^{b}-\left(T_{b}-A_{2}\right)\left(c_{1}+c_{2}\right)+\left(T_{b}-A_{1}\right) c_{1}$. Consider first the numerator of the normalized least-squares estimator $T\left(\tilde{\alpha}^{C}-1\right)$:

$$
\begin{aligned}
T^{-1} \tilde{Y}_{-1}^{C \prime}\left(\tilde{Y}^{C}-\tilde{Y}_{-1}^{C}\right) & =T^{-1} \tilde{Y}_{-1}^{C \prime}\left[E-c_{1} i-c_{2} D U+q D(T B)\right] \\
& =T^{-1} \tilde{Y}_{-1}^{C \prime} E+T^{-1 / 2} q T^{-1 / 2} \tilde{y}_{T_{b}}^{C}+o_{p}(1)
\end{aligned}
$$

Similar to model A, we have

$$
T^{-1} \tilde{Y}_{-1}^{C^{\prime}} E \Longrightarrow \sigma^{2} H_{C} / g_{C} \equiv \sigma^{2} \int_{0}^{1} w_{C}(r) d r(r)+\delta
$$

Also:

$$
\begin{aligned}
T^{-1 / 2} q= & T^{-1 / 2} \bar{Y}^{a}-T^{-1 / 2} \bar{Y}^{b}-T^{-1}\left(T_{b}-A_{2}\right) T^{1 / 2}\left(c_{1}+c_{2}\right) \\
& +T^{-1}\left(T_{b}-A_{1}\right) T^{1 / 2} c_{1} \\
\Longrightarrow & \sigma\left\{\lambda^{-1} \int_{0}^{\lambda} w(r) d r-(1-\lambda)^{-1} \int_{\lambda}^{1} w(r) d r\right. \\
& \left.-(1-\lambda) \psi_{5} /\left(2 g_{C}\right)+6 D_{12} / \lambda^{2}\right\} \\
= & \sigma\left\{D_{4} /[\lambda(1-\lambda)]-(1-\lambda) \psi_{5} /\left(2 g_{C}\right)+6 D_{12} / \lambda^{2}\right\} \equiv \sigma L_{C} ; \\
T^{-1 / 2} \tilde{y}_{T_{b}}^{C}= & T^{-1 / 2} y_{T_{b}}-T^{-1 / 2} \bar{Y}^{a}-T^{-1}\left(T_{b}-A_{1}\right) T^{1 / 2} c_{1} \\
\Longrightarrow & \sigma\left\{w(\lambda)-\lambda^{-1} \int_{0}^{\lambda} w(r) d r-6 D_{12} / \lambda^{2}\right\} \equiv \sigma M_{C} .
\end{aligned}
$$

Hence:

$$
\begin{align*}
T^{-1} \tilde{T}_{-1}^{C}\left(\tilde{Y}^{C}-\tilde{Y}_{-1}^{C}\right) & \Longrightarrow \sigma^{2}\left\{H_{C} / g_{C}+L_{C} M_{C}\right\} \\
& \equiv \sigma^{2}\left\{\int_{0}^{1} w_{C}(r) d w(r)+\delta+L_{C} M_{C}\right\} \tag{A.11}
\end{align*}
$$

The proof of (3), with $i=C$, follows using (A.11) and $T^{-2} \tilde{Y}_{-1}^{C_{1}^{\prime}} \tilde{Y}_{-1}^{C}$ $\Longrightarrow \sigma^{2} K_{C} / g_{C} \equiv \sigma^{2} \int_{0}^{1} w_{C}(r)^{2} d r$. Derivations analogous to those for Model A show that $\tilde{s}_{C}^{2} \Longrightarrow \sigma_{e}^{2}+\sigma^{2} L_{C}^{2}$.
Proof of (5)-(6), MODEL B: Let \tilde{y}_{t}^{B} be the residuals from a projection of y_{t} on $\left\{1, t, D T_{t}^{*}\right\}(t=1, \ldots, T)$. Straightforward algebra yields:

$$
\begin{align*}
& \tilde{y}_{t}^{B}=y_{t}-\bar{Y}-(t-\bar{t}) c_{3}+\bar{t}^{*} c_{4}, \quad t \leq T_{b} \\
& \tilde{y}_{t}^{B}=y_{t}-\bar{Y}-(t-\bar{t}) c_{3}-\left(t-T_{b}-\bar{t}^{*}\right) c_{4}, \quad t>T_{b} \tag{A.12}
\end{align*}
$$

where $\bar{Y}=T^{-1} \sum_{t=1}^{T} y_{t}, \bar{t}=T^{-1} \sum_{t=1}^{T} t, \bar{t}^{*}=T^{-1} \sum_{t=1}^{T-T_{b}} t$. Note that $T^{-1 / 2} \bar{Y} \Longrightarrow \sigma \int_{0}^{1} w(r) d r, T^{-1} \bar{t} \Longrightarrow 1 / 2, T^{-1} \bar{t}^{*} \Longrightarrow(1-\lambda)^{2} / 2$. The variables c_{3} and c_{4} are defined by $\left[c_{3}, c_{4}\right]^{\prime}=\left(W^{\prime} W\right)^{-1} W^{\prime}(Y-\bar{Y})$
where

$$
W=\left[\begin{array}{cc}
1-\bar{t} & -\bar{t}^{*} \\
\vdots & \cdot \\
\vdots & -\bar{t}^{*} \\
\vdots & 1-\bar{t}^{*} \\
& \vdots \\
T-\bar{t} & T-T_{b}-\bar{t}^{*}
\end{array}\right]
$$

We Have $T^{1 / 2} c_{3} \Longrightarrow-\sigma \psi_{3} / g_{B}$ and $T^{1 / 2} c_{4} \Longrightarrow-\sigma \psi_{4} / g_{B}$ with g_{B}, ψ_{3} and ψ_{4} as defined in P89 (Theorem 2, see also Perron (1992)). The first-differences are given by:

$$
\begin{align*}
\tilde{y}_{t}^{B}-\tilde{y}_{t-1}^{B} & =e_{t}-c_{3}, \quad t \leq T_{b} \tag{A.13}\\
& =e_{t}-\left(c_{3}+c_{4}\right), \quad t>T_{b}
\end{align*}
$$

or in vector notation: $\tilde{Y}^{B}-\tilde{Y}_{-1}^{B}=E-c_{3} i-c_{4} D U$. Consider the numerator of $T\left(\tilde{\alpha}^{B}-1\right)$:

$$
\begin{aligned}
T^{-1} \tilde{Y}_{-1}^{B \prime}\left(\tilde{Y}^{B}-\tilde{Y}_{-1}^{B}\right) & =T^{-1} \tilde{Y}_{-1}^{B \prime}\left(E-c_{3} i-c_{4} D U\right) \\
& =T^{-1} \tilde{Y}_{-1}^{B \prime} E-T^{1 / 2} c_{4} T^{-3 / 2} \tilde{Y}_{-1}^{B \prime} D U+o_{p}(1) \\
& \Longrightarrow \sigma^{2}\left\{H_{B} / g_{B}+\left(\psi_{4} / g_{B}\right) \int_{\lambda}^{1} w_{B}(r) d r\right\} \\
& \equiv \sigma^{2}\left\{\int_{0}^{1} w_{B}(r) d w(r)+\delta+\left(\psi_{4} / g_{B}\right) \int_{\lambda}^{1} w_{B}(r) d r\right\}
\end{aligned}
$$

This proves (5) nothing that

$$
T^{-2} \tilde{Y}_{-1}^{B \prime} \tilde{Y}_{-1}^{B} \Longrightarrow \sigma^{2} K_{B} / g_{B} \equiv \sigma^{2} \int_{0}^{1} w_{B}(r)^{2} d r
$$

To prove (6), we simply need to show that $\tilde{s}_{B}^{2} \rightarrow \sigma_{e}^{2}$. Using (A.13):

$$
\begin{aligned}
\tilde{s}_{B}^{2}= & T^{-1} \sum_{t=2}^{T}\left(\tilde{y}_{t}^{B}-\tilde{\alpha}^{B} \tilde{y}_{t-1}^{B}\right)^{2}=T^{-1} \sum_{t=2}^{T}\left(\tilde{y}_{t}^{B}-\tilde{y}_{t-1}^{B}\right. \\
& \left.\quad-\left(\tilde{\alpha}^{B}-1\right) \tilde{y}_{t-1}^{B}\right)^{2} \\
= & T^{-1} \sum_{t=2}^{T}\left(\tilde{y}_{t}^{B}-\tilde{y}_{t-1}^{B}\right)^{2}+o_{p}(1)=T^{-1} \sum_{t=2}^{T_{b}}\left(e_{t}-c_{3}\right)^{2} \\
& +T^{-1} \sum_{t=T_{b}+1}^{T}\left(e_{t}-c_{3}-c_{4}\right)^{2} \\
= & T^{-1} \sum_{t=2}^{T} e_{t}^{2}+o_{p}(1) \rightarrow \sigma_{e}^{2}, \text { since } c_{3}=O_{p}\left(T^{-1 / 2}\right) \text { and } \\
c_{4}= & O_{p}\left(T^{-1 / 2}\right) .
\end{aligned}
$$

Proof of (9)-(10): We prove the results for Model A only; the proof for Model C is entirely analogous and therefore omitted. Let $\breve{y}_{0, t}^{A}$ be the residuals from a regression of \tilde{y}_{t}^{A} on $D(T B)_{t}(t=2, \ldots, T)$ and let $\breve{y}_{1, t-1}^{A}$ be the residuals from a regression of \breve{y}_{t-1}^{A} on $D(T B)_{t}(t=$ $2, \ldots, T)$. We have, for $t=2, \ldots, T: \breve{y}_{0, t}^{A}=\bar{y}_{t}^{A}$ if $t \neq T_{b}+1$ and 0 otherwise; $\breve{y}_{1, t-1}^{A}=\tilde{y}_{t-1}^{A}$ if $t \neq T_{b}+1$ and 0 otherwise. Also, $\breve{y}_{0, t}^{A}-$ $\breve{y}_{1, t-1}^{A}=e_{t}-c$ if $t \neq T_{b}+1$ and 0 otherwise. The least-squares estimate and t-statistic from regression (8) are given by:

$$
\begin{aligned}
T\left(\hat{\alpha}^{A}-1\right) & =T^{-1} \sum_{t=2}^{T} \breve{y}_{1, t-1}^{A}\left(\breve{y}_{0, t}^{A}-\breve{y}_{1, t-1}^{A}\right) / T^{-2} \sum_{t=2}^{T}\left(\breve{y}_{1, t-1}^{A}\right)^{2}, \text { and } \\
t_{\hat{\alpha}} A & =T^{-1} \sum_{t=2}^{T} \breve{y}_{1, t-1}^{A}\left(\breve{y}_{0, t}^{A}-\breve{y}_{1, t-1}^{A}\right) /\left[\hat{s}_{A}^{2} T^{-2} \sum_{t=2}^{T}\left(\breve{y}_{1, t-1}^{A}\right)^{2}\right]^{1 / 2}, \\
\text { where } \hat{s}_{A}^{2} & =T^{-1} \sum_{t=2}^{T} \hat{u}_{t}^{2}
\end{aligned}
$$

with $\hat{u} t$ the estimated residuals from (8). Consider first the numerator

Perron, Vogelsang

of $T\left(\hat{\alpha}^{A}-1\right)$:

$$
\begin{align*}
& T^{-1} \sum_{t=2}^{T} \breve{y}_{1, t-1}^{A}\left(\breve{y}_{0, t}^{A}-\breve{y}_{1, t-1}^{A}\right)=T^{-1} \sum_{t=2}^{T_{b}} \tilde{y}_{t-1}^{A}\left(e_{t}-c\right) \\
&+T^{-1} \sum_{t=T_{b}+2}^{T} \tilde{y}_{t-1}^{A}\left(e_{t}-c\right) \\
&= T^{-1} \sum_{t=2}^{T} \tilde{y}_{t-1}^{A}\left(e_{t}-c\right) \\
&-T^{-1}\left(y T_{b}-\bar{Y}^{a}-\left(T_{b}-A_{1}\right) c\right)\left(e_{T_{b}+1}-c\right) \\
&= T^{-1} \sum_{t=2}^{T} \tilde{y}_{t-1}^{A} e_{t}+o_{p}(1), \text { using } \sum_{t=1}^{T} \tilde{y}_{t}^{A}=0 \\
& \Longrightarrow \sigma^{2} H_{A} / g_{A} \equiv \sigma^{2} \int_{0}^{1} w_{A}(r) d r(r)+\delta \tag{A.14}
\end{align*}
$$

Similarly the limit of the denominator of $T\left(\hat{\alpha}^{A}-1\right)$ is given by:

$$
\begin{align*}
T^{-2} \sum_{t=2}^{T}\left(\breve{y}_{1, t-1}^{A}\right)^{2} & =T^{-2} \sum_{t=2}^{T_{b}}\left(\tilde{y}_{t-1}^{A}\right)^{2}+T^{-2} \sum_{t=T_{b}+2}^{T}\left(\tilde{y}_{t-1}^{A}\right)^{2} \\
& =T^{-2} \sum_{t=2}^{T}\left(\tilde{y}_{t-1}^{A}\right)^{2}-T^{-2}\left(\tilde{y}_{T_{b}}^{A}\right)^{2} \\
& =T^{-2} \sum_{t=2}^{T}\left(\tilde{y}_{t--1}^{A}\right)^{2}+o_{p}(1) \\
& \Longrightarrow \sigma^{2} K_{A} / g_{A} \equiv \sigma^{2} \int_{0}^{1} w_{A}(r)^{2} d r \tag{A.15}
\end{align*}
$$

This proves (9) using (A.14) and (A.15). To prove (10), we show that
$\hat{s}_{A}^{2} \rightarrow \sigma_{e}^{2}$. We have:

$$
\begin{aligned}
\hat{s}_{A}^{2}= & T^{-1} \sum_{t=2}^{T}\left(\breve{y}_{0, t}^{A}-\hat{\alpha}^{A} \breve{y}_{1, t-1}^{A}\right)^{2} \\
= & T^{-1} \sum_{t=2}^{T}\left(\breve{y}_{0, t}^{A}-\breve{y}_{1, t-1}^{A}-\left(\hat{\alpha}^{A}-1\right) \breve{y}_{1, t-1}^{A}\right)^{2} \\
= & T^{-1} \sum_{t=2}^{T}\left(\breve{y}_{0, t}^{A}-\breve{y}_{1, t-1}^{A}\right)^{2} \\
& -T^{-1} 2 T\left(\hat{\alpha}^{A}-1\right) T^{-1} \sum_{t=2}^{T} \breve{y}_{1, t-1}^{A}\left(\breve{y}_{0, t}^{A}-\breve{y}_{1, t-1}^{A}\right) \\
& +T^{-1} T^{2}\left(\hat{\alpha}^{A}-1\right)^{2} T^{-2} \sum_{t=2}^{T}\left(\breve{y}_{1, t-1}^{A}\right)^{2} \\
= & T^{-1} \sum_{t=2}^{T}\left(\breve{y}_{0, t}^{A}-\breve{y}_{1, t-1}^{A}\right)^{2}+o_{p}(1), \text { in view }(\text { A.14 }),(\text { A.15 }) \text { and (9), } \\
= & T^{-1} \sum_{t=2}^{T_{b}}\left(e_{t}-c\right)^{2}+T^{-1} \sum_{t=T_{b}+2}^{T}\left(e_{t}-c\right)^{2}+o_{p}(1), \text { using (A.13), } \\
= & T^{-1} \sum_{t=2}^{T} e_{t}^{2}+o_{p}(1), \text { since } c=O_{p}\left(T^{-1 / 2}\right), \\
\rightarrow & \sigma_{e}^{2}, \text { as required. }
\end{aligned}
$$

Perron, Vogelsang

Table 1.

Percentage Points of the Distribution of $t_{\tilde{\alpha}}$; Model B.

$\boldsymbol{\lambda}$	\mathbf{T}	1.0%	2.5%	5.0%	10.0%	90.0%	95.0%	97.5%	99.0%
0.1	50	-4.30	-3.90	-3.58	-3.23	-1.28	-1.01	-0.73	-0.43
	100	-4.15	-3.84	-3.58	-3.24	-1.30	-1.02	-0.76	-0.45
	200	-4.07	-3.77	-3.48	-3.21	-1.27	-0.98	-0.70	-0.37
	1000	-4.13	-3.81	-3.52	-3.22	-1.19	-0.86	-0.56	-0.24
	∞	-4.15	-3.81	-3.52	-3.23	-1.19	-0.85	-0.55	-0.22
0.2	50	-4.55	-4.12	-3.81	-3.47	-1.44	-1.16	-0.88	-0.61
	100	-4.43	-4.11	-3.78	-3.46	-1.43	-1.16	-0.90	-0.58
	200	-4.23	-3.97	-3.71	-3.40	-1.41	-1.13	-0.84	-0.49
	1000	-4.34	-4.00	-3.71	-3.41	-1.36	-1.02	-0.70	-0.35
	∞	-4.34	-4.01	-3.72	-3.41	-1.35	-1.01	-0.70	-0.33
0.3	50	-4.67	-4.25	-3.95	-3.62	-1.59	-1.32	-1.06	-0.77
	100	-4.54	-4.22	-3.92	-3.60	-1.60	-1.32	-1.07	-0.73
	200	-4.32	-4.06	-3.80	-3.52	-1.56	-1.28	-1.01	-0.65
	1000	-4.41	-4.09	-3.84	-3.54	-1.52	-1.19	-0.88	-0.54
	∞	-4.41	-4.14	-3.85	-3.54	-1.52	-1.19	-0.87	-0.53
0.4	50	-4.73	-4.34	-4.05	-3.71	-1.74	-1.47	-1.22	-0.94
	100	-4.57	-4.23	-3.97	-3.65	-1.74	-1.47	-1.21	-0.91
	200	-4.44	-4.12	-3.88	-3.57	-1.69	-1.42	-1.17	-0.86
	1000	-4.46	-4.13	-3.90	-3.61	-1.69	-1.35	-1.06	-0.68
	∞	-4.48	-4.15	-3.91	-3.61	-1.69	-1.35	-1.06	-0.68

Table 1.
Continuação.

$\boldsymbol{\lambda}$	T	1.0%	2.5%	5.0%	10.0%	90.0%	95.0%	97.5%	99.0%
0.5	50	-4.77	-4.40	-4.09	-3.78	-1.85	-1.60	-1.38	-1.12
	100	-4.57	-4.27	-3.99	-3.69	-1.83	-1.58	-1.36	-1.10
	200	-4.47	-4.17	-3.91	-3.63	-1.80	-1.55	-1.32	-1.03
	1000	-4.48	-4.16	-3.92	-3.64	-1.79	-1.48	-1.20	-0.87
	∞	-4.49	-4.17	-3.93	-3.65	-1.80	-1.47	-1.21	-0.85
0.6	50	-4.76	-4.40	-4.10	-3.79	-1.90	-1.68	-1.47	-1.25
	100	-4.59	-4.31	-3.99	-3.69	-1.88	-1.67	-1.45	-1.23
	200	-4.45	-4.17	-3.92	-3.64	-1.85	-1.62	-1.40	-1.14
	1000	-4.48	-4.16	-3.93	-3.64	-1.85	-1.56	-1.30	-0.99
	∞	-4.50	-4.18	-3.94	-3.65	-1.85	-1.56	-1.29	-0.96
0.7	50	-4.78	-4.38	-4.08	-3.76	-1.89	-1.69	-1.52	-1.33
	100	-4.55	-4.24	-3.95	-3.65	-1.88	-1.67	-1.50	-1.31
	200	-4.43	-4.13	-3.89	-3.60	-1.83	-1.61	-1.43	-1.21
	1000	-4.45	-4.12	-3.90	-3.60	-1.83	-1.57	-1.35	-1.06
	∞	-4.49	-4.13	-3.89	-3.60	-1.84	-1.57	-1.35	-1.06
0.8	50	-4.71	-4.30	-3.99	-3.68	-1.84	-1.65	-1.50	-1.37
	100	-4.53	-4.17	-3.89	-3.57	-1.82	-1.62	-1.47	-1.30
	200	-4.42	-4.09	-3.82	-3.52	-1.79	-1.58	-1.42	-1.23
	1000	-4.39	-4.10	-3.84	-3.54	-1.76	-1.54	-1.34	-1.11
	∞	-4.41	-4.09	-3.83	-3.55	-1.76	-1.53	-1.33	-1.11
0.9	50	-4.55	-4.15	-3.84	-3.52	-1.80	-1.63	-1.50	-1.38
	100	-4.43	-4.08	-3.78	-3.47	-1.76	-1.58	-1.44	-1.30
	200	-4.28	-3.98	-3.70	-3.41	-1.72	-1.53	-1.40	-1.25
	1000	-4.28	-3.96	-3.72	-3.43	-1.66	-1.46	-1.29	-1.09
	∞	-4.29	-3.95	-3.72	-3.42	-1.67	-1.45	-1.26	-1.06

Table 2.
Percentage Points of the Asymptotic Distribution of $T(\tilde{\alpha}-1)$ Two-step procedure for Model B.

$\boldsymbol{\lambda}$	1.0%	2.5%	5.0%	10.0%	90.0%	95.0%	97.5%	99.0%
0.1	-34.27	-29.24	-24.90	-21.00	-3.61	-2.40	-1.48	-0.59
0.2	-37.02	-31.57	-27.45	-23.09	-4.44	-3.13	-2.04	-0.92
0.3	-37.89	-33.10	-29.10	-24.55	-5.41	-3.92	-2.70	-1.55
0.4	-38.95	-33.48	-29.60	-25.33	-6.39	-4.69	-3.47	-2.09
0.5	-38.80	-33.52	-29.94	-25.57	-6.99	-5.34	-3.99	-2.70
0.6	-38.42	-33.84	-29.74	-25.57	-7.19	-5.52	-4.34	-3.01
0.7	-38.02	-33.10	-28.97	-24.69	-6.77	-5.16	-4.09	-3.12
0.8	-37.26	-32.05	-27.97	-23.79	-5.96	-4.68	-3.79	-2.87
0.9	-35.19	-30.27	-26.07	-21.94	-5.16	-4.10	-3.37	-2.57

Table 3.
Percentage Points of the Asymptotic Distribution of $\inf _{\lambda \in \Lambda} t_{\tilde{\alpha}}(\lambda)$. Two step procedure for Model B.

1.0%	2.5%	5.0%	10.0%	90.0%	95.0%	97.5%	99.0%
-4.91	-4.62	-4.36	-4.07	-2.32	-2.12	-1.96	-1.78

Table 4.
Percentage Points of the Asymptotic Distribution of $\inf _{\lambda \in \Lambda} T\left(\tilde{\alpha}^{i}(\lambda)-1\right)$.

1.0%	2.5%	5.0%	10.0%	90.0%	95.0%	97.5%	99.0%	
Model A	-47.84	-42.51	-38.16	-33.87	-13.10	-11.36	-9.94	-8.40
Model B	-46.54	-41.10	-36.51	-31.89	-10.18	-8.47	-7.12	-5.92
Model C	-56.23	-50.11	-45.21	-40.17	-16.48	-14.39	-12.69	-11.00

[^0]: *Financial support is acknowledged from the Fonds pour la Formation de Chercheurs et l'Aide à la Recherche du Québec (Perron) and the International Finance Section at Princeton University (Vogelsang).
 **Université de Montréal Département de Sciences Economiques and Centre de Recherche et Développement en Economique, Université de Montréal, C.P. 6128, Succ. A., Montréal, Canada, H3C-3J7.
 ***Princeton University Department of Economics, Princeton University, Princeton, NJ, 08544.

[^1]: R. de Econometria Rio de Janeiro v. 13, no 2, p.181-201 novembro 1993/abril 1994

