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Resumo

Este artigo discute testes para uma raiz unitéria permitindo a possibilidade
de uma quebra inica no intercepto e/ou na inclinagdo da fungio de tendéncia
do modelo de outlier aditivo discutido em Perron (1989). Detectamos e corrigi-
mos um erro na fungao de distribui¢ao assintética do teste proposto neste caso. A
modificagdo feita nos permite construir uma estatistica com a mesma distribuigdo
assintética da encontrada em Perron (1989). Discutimos, também, a propriedade
de aproximagdes assintdticas e védrias extensbes onde o ponto de quebra é descon-
hecido.

Abstract

This note discusses tests for a unit root allowing the possibility of a one-
time change in the intercept and/or the slope of the trend function in the additive
outlier model considered in Perron (1989). We discuss and correct an error in
the stated asymptotic distributions of the tests in this case. We propose a simple
modification of the procedure which yields statistics having the same asymptotic
distributions as stated in Perron (1989). We also discuss the adequacy of the
asymptotic approximations and various extensions to the case where the break-
point is unknown with corresponding asymptotic critical values.

"Tests for a unit root allowing for the possible presence of a one-
time change in the intercept and/or slope of a series were proposed
by Perron (1989) (henceforth referred to as P89). He considered two
general classes of models: a) the additive outlier model, appropriate
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when the change is sudden, and b) the innovational outlier model,
appropriate when the change is gradual. In this note, we discuss an
error in the treatment of the asymptotic distributions of the tests
associated with the additive outlier model. We point out that the
asymptotic distributions of these statistics are different than those
stated in P89 and also that they depend on the correlation structure
of the data when a change in intercept is involved, even if the appro-
priate order of the autoregression is used. Fortunately, in these cases,
a simple modification is available which yields statistics having the
same asymptotic distributions (invariant to nuisance parameters) as
stated in P89. This transformation is discussed, as well as the asymp-
totic approximation that is related. We also discuss extensions to
the case where the breakpoint is unknown and present corresponding
asymptotic critical values.

The present note contains an extended discussion and proofs of
assertions stated in Perron (1992). It covers cases dealing with trend-
ing data, where as Perron and Vogelsang (1992) cover similar correc-
tions and extensions to Perron (1990) for the case of non-trending
data. The case of trending data offers some interesting contrasts,
especially when a change in slope is involved with both segments of
the trend joined at the time of change. Here, the two-step method
suggested in Perron (1989) is still valid. The asymptotic distribu-
tions are, however, different from those stated earlier for a known
breakpoint and also different from the limiting distribution stated in
Zivot and Andrews (1992) for an unknown breakpoint. We provide
tabulated critical values, in this and other settings, that should be
useful for applications.

1. The models and the statistics.

The additive outlier models allow for a sudden change in the
intercept and /or slope of a series {y:}7 , say, at time Tp(1 < T, < T').
Model A (the crash model) specifies a change in the intercept, model
B a change in the slope (restricting the segments to be joined) and
Model C allows for both a change in intercept and slope. The models
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are specified, respectively, as (for t = 1,...,T):

Yt = p+ pt +DU; + Zt, (1.A)
ye = p+ Pt + 6DT} + Z;, (1.B)
Yyt = p+ Bt +vDU; + DT, + Zi, (1.0)

where DU; =1, DT} =t - T, and DIy =t if ¢ > Ty, and DU; =
DTy = DT; = 0 otherwise. The noise component Z; is assumed to be
a finite order ARMA(p,q) process of the form A(L)Z; = B(L)vy(Zy =
0) with v ~ .i.d.(0,02) with finite fourth moment. It is assumed
that all the roots of B(z) = 0 are strictly outside the unit circle
and that the polynomial A(z) = 0 has at most one root on the unit
circle with all others strictly outside. Denote by « the sum of the
autoregressive coefficients, 1—A(1), and write A(L) = (1—aL)A*(L).
Under thenull hypothesis @ = 1, and under the alternative hypothesis
a < 1. Using this notation, we can write Z; = aZ;—; + e; where
e; = A*(L)"*B(L)v,.

Let {§};i = A, B,C} be the residuals from a regression of y; on
{1,t, DU} (i = A), {1,t, DT} }(¢ = B), {1,t,DU;, DT;}(i = C). The
tests based on the additive outlier models from P89 are the normalized
bias T°(&*-1) and the t-statistic for testing the null hypothesis a = 1,
denoted by ¢57, in the following second step regression:

7t = &g, + 4, (i=A4,B,C) t=2,..,T. (2)

2. The limiting distributions.

L.et w;(r) be the projection residual of a Wiener process w(r)
on the subspace generated by the functions {1,r,du(r)}(i = A),
{1,7,dr*(r)}(i = B) and {1,r,du(r),dr(r)}(i = C) where du(r) = 1,
dr*(r) =r-A,dr(r) = rifr > A and du(r) = dr*(r) = dr(r) = O oth-
erwise. Here, A = [T},/T7] is the ratio of pre-break sample size to total
samplesize. Denoting by “=—>" weak convergence in distribution, the
limiting distributions of T'(&* — 1) and t4i are, instead of those stated
in Theorem 2 of P89 (with g;(i = A, B,C), 1, %4, s, D4 and D;; as
defined in that Theorem, see also Perron (1992) where gg and gc are
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correctly stated to be defined by gg = A3/3 and gc = (1 — 1)3/12):
. 1 1
T(& — 1) =[] wi(r)dw(r) + 6 + L;M;)[J w; (r)2dr] ™,
0 0

(3)
tat =¢'[Z w;(r)dw(r) + 6 + L; M;)

(03/a* + 1) [rus(rYodr] 72, @

for i = A,C, where Lay = Dg/[(1 — M)A +¥1/(294), Mg = w(}) —
AL [Rw(r)dr — Mp1/(294), Le = Da/[(1 — M)A + 6Dy2/A2 — (1 —
s/ (29¢), Mo = w(A) — A1 [Q w(r)dr — 6D12/A2. Also 6 = (02 —
02)/202 where 0 = limy_,co T~ E[S2] with S7 = ¥.7_, €; and 02 =
limz_,o0 T~ ST | E(e?). For Model B:

T(a° 1) = ([ wa(r)du(r) + 8+ (Ju/95) [ w5 (r)dr]
[ wa(r)?dr]™, ®)
taB = (o/00)[wB(r)du(r) + 8+ (¥a/95) [ wa(r)dr]

[, ©)

All proofs are in the Appendix. Consider first results pertaining to
Models A and C. The limiting distributions in (3) and (4) are free
of nuisance parameters when the errors e; are uncorrelated (in which
case 0, = o) and percentage points could be tabulated. There are
two problems with this approach. One is that the Phillips-Perron
(1988) nonparametric correction is different and more complex than
that stated in Section 4.1 of P89. More importantly, it can be shown
that the use of the augmented regression:

k
Ji= &'y + ) G AT+, (7)
j=1
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does not eliminate the dependency of the ¢-statistic on nuisance pa-
rameters even when Z; is an autoregressive process of known order.
There is, however, a simple way to modify the second step regression
(2) to avoid these problems. Consider first the modification:

g; = (:JID(TB)t + &igi—l +ﬁ;. (Z = A, C) (t = 2) *ety T) (8)

Let t5i be the t-statistic for testing a* = 1 in (8). It is shown in the
Appendix that;

T(c‘xi—1)=>(0}wi(7')dw('r)+5)(({1wi(7‘)2d7')_1, @=40) )

tai =+ (o/o)([ wi(r)du(r) + &) wx(rYar)y 2. (i = 4,0)
(10

Hence, if the one-time dummy D(TB); is included in the second
step regression, the asymptotic distributions of the statistics are the
same as those stated in P89, and in particular, the same as those
associated with the innovational outlier model (regressions (12) and
(14) in P89), When the errors are martingales differences o = o, and
hence § = 0. In that case the limiting distributions stated in (9) and
(10) are invariant to nuisance parameters. Critical values are given
in Table 4 (A, B) and 6 (A, B) of P89.

Consider now the case of-Model B. Here things are different.
First, the limiting distributions are different from the innovational
outlier case only insofar as an extra term (independent of nuisance
parameters) is present in the numerator. Hence, on the one hand, the
application of the Phillips-Perron transformations (as discussed in
section 4.1 of P89) is still valid provided the asymptotic distribution
in (8) and (9) with o, = o are used. Also, contrary to the case with
Models A and C, the limiting distribution of the ¢-statistic, obtained
using the augumented regression (7), is given by (6) with o = o
when the noise component is an autoregression.

Hence, the critical values of the limiting distributions (5) and (6)
with &, = o can be used for inference purposes. These are different
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from those stated in P89 and are tabulated in Perron (1992). Ta-
ble 1 reproduces the asymptotic distribution of ¢; B and reports finite
sample critical values to assess the adequacy of the asymptotic ap-
proximation (the data-generating process used being a random walk
with N(0, 1) innovations and initial condition set at zero; 10,000
replications are used). The approximation is seen to be adequate for
common sample sizes. Comparing the results with those in Tables
5.A and 5.B of P89, it is seen that the differences in the asymptotic
distributions are mainly in the right tail, the left tail being very sim-
ilar. Furthermore, the corrected asymptotic distribution is, unlike
the other cases, clearly asymmetric around A = 0.5 (again, especially
given the behavior of the distribution in the right tail).

3. Extensions to more general error processes.

Consider first the case of model B. Applying the augumented
regression (7) when the DGP is an AR(p) with a unit root leads to a
t-statistic with an asymptotic distribution equivalent to that stated in
(6) with g, = o (details of the proof are available on request). Hence,
the limiting distribution is different from that tabulated in P89 but
is otherwise free of nuisance parameters, and the appropriate critical
values are those in Table 1 of this note. Similarly the corresponding
Phillips-Perron Z(t5) and Z(&) statistics are still valid if the asymp-
totic critical values in Tables 1 and 2 of this note are used.

Consider now the transformations to (8), for Models A and C,
necessary for the limiting distributions of the tests to be invariant to
nuisance parameters when Z; is an ARMA(p, q). First, the extensions
of the Phillips and Perron (1988) statistics, discussed in Section 4.1
of P89, remain valid provided &' and t5i in equations (6) and (7) of
P89 are replaced by a* and t4i from (8) above (similarly 5% and 52
need to be replaced by estimators based on the residuals from that
regression). The asymptotic critical values are still those in Table
4.A-B and 6.A-B of P89. Secondly, the Said-Dickey (1984) extension,
discussed in Section 4.1 of P89, remains valid for Models A and C
provided the augmented regression (7) is replaced by:

k k
§i =Y @;D(TB)sj +&F_y + D &AT_; +1, (i= A4,C) (12)
7=0 J=1
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The introduction of the dummies {D(T'B)—;}5.o makes the asymp-
totic distribution of the t-statistic for « = 1 in (11), ¢4, be that
stated in (10) with o = g.. The introduction of these dummies is
sufficient to correct the problems discussed above for the additive
outlier model and the critical values in Tables 4.B and 6.B of P89 are
appropriate.

4. Extensions to unknown break points.

Several recent studies have considered extensions of the tests
proposed in P89 to the case where the break point is unknown (see
Banerjee, Lumsdaine and Stock (1992), Zivot and Andrews (1992)
and Perron (1991)). Among the tests considered in these papers
are minimal ¢-statistics obtained over all possible break points, i.e.
tai(inf) = inf e t4i()) where £5i()) is the ¢-statistic for testing @ =
1 in model i with a break point fixed at [AT] and A is a closed
subset of the interval (0,1). Using results in Zivot and Andrews
(1992), the limiting distribution of the minimal ¢-statistic from Model
B (regression (7)) is:

£4B(inf) = infm{[of1 wa(r)dw(r) + (1/95) {1 wg(r)dr]

[g' wg(r)idr]~1/?}. (12)

Tabulated critical values of the asymptotic distribution in (12)
are presented in Table 3. These are obtained using simulation meth-
ods with a grid of 1,000 values for A and 50,000 replications. The
critical values of the corresponding asymptotic distributions of the
t-statistics associated with Models A and C are presented in Zivot
and Andrews (1992). Note that Table 3 of Zivot and Andrews (1992)
does not provide the asymptotic distribution of 5B (inf) as obtained
from regression (7). They use a one step procedure which does not
permit the change in slope to be present under the null hypothesis.

For completeness Table 4 gives the asymptotic critical values
of the distribution of infica[fy wa(r)dw(r) + (bs/gs) [} wp(r)dr]
[/3 wp(r)?dr]~1, for Model B. These critical values can be used when
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considering the minimal value (over all break points) of the Phillips-
Perron Z(&) statistic in the additive outlier model assuming the break
point to be unknown. Also presented in Table 4 are the critical val-
ues of the distributions of infs[fg wi(r)dw(r) (fo w;i(r)2dr)~?] for
i = A, and C. These can be used with the minimal values of the Z(&)
statistics in Models A and C (provided equation (8) is used). These
are referred to as the limiting distribution of inf s T(&*(\) — 1) since
"they correspond to the asymptotic distribution of the minimal nor-
malized bias over all possible break points when the errors e; are un-
correlated. In the case of Models A and C, & is constructed from the
regression (8), and for Model B it is constructed from regression (2).

(Received July 1993. Revised November 1993)
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Mathematical Appendix

We first note that the exact distributions of the statistics of in-
terest are invariant to the parameters g, 8, A, and # in (1.A)-(1.C).
Therefore, without loss of generality, we derive the following asymp-
totic results under the simplified data-generating process, where e;,
a finite order ARMA(p, q) process, is as defined in the text:

Yt = Ye—1 + et (A1)

PROOF OF (3)—(4), MODEL A: Let {1 be the residuals from a pro-
jection of y; on {1,¢, DU} (¢t = 1,...,,T). Straightforward algebra
yields:

=y -7 —(—A)e, t<T,

(A.2)
. sl
yf = Yt -Y —-(t—Ag)C, t>Tb,

where Y* =Ty T Rw Y = (T-T) Zt._Tb-}-l Y, A1 =

- 221 t, A2 = (T - Ty)” Et:Tb-(-l t, and ¢ = {Z:=1 tys —
Y%A, — (T - T)Y A HE T 12 — TyA? — (T — Ty)A3}~1. We
note the following convergence results that are easily obtained us-
ing results m P89: T-V2¥" —s (o/A) [Rw(r)dr, T-27° =
(a/(1 = N) [xw(r)dr, T-1A; => A2, T A; = (1+ \)/2, and
TY2¢ = g1p,/ga, where g4 and ¥, are as defined in P89 (Theo-
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rem 2). Using (A.1) and (A.2):

B-Gti=e—c, (t£T+1),
(A.3)
—a b
GG mem et T - T+ (- Ao, (t=Tu+1).
Let YA' — (‘-‘24,..., 'y%), Y—l = (glA)"') 37%—1)’ E = (32,...,67‘), i =

(1,1,...,1), and D(TB) a (T — 1) by 1 vector with 1 ift =T} +1 and
0 elsewhere. We can write (A.3) as:

VA_YA —E—ic+ D(TB)T* -V + (42— A)e).  (AA4)
Using this notation, we have
T(a* — 1) =T WAYA - YA) /T2 AVATVA.
Consider first the numerator of T(@4 -1):

T-1YA (VA — PA) = T-'PA(E —ic+ D(TB)(Y* -

+ (A2 - A]_)C)
=T 'YAE + T4, (17" - T-V/°7"
+T (A — A)TY?%¢) + 0p(1). (A.5)

Using results in P89 (see also Zivot and Andrews (1992)), T-1VA'E
= 02Hp/ga = az[f(} wa(r)dw(r) + 6. Consider now the second
term in (A.5). Using (A.2), we have:

T-254, =T~V 2yp, - T7V3Y" - T7Y(T; - A1)TH?c
= ofu(A) — X7 [ u(r)dr - M1/(294)] = oM
T-127° _ 7127 + 71 (4, — A)TH ¢
— oA? Ofw(r)dr (-t zw(r)dr +91/(29)]
= 0[D4/[M1 - N)] +¥1/(294)] = 0 L4,
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where Dj is as defined in P89 (Theorem 2). Hence,
T-IVA(VA - YA) = 0%[Ha/ga + LaMy)

= 02[} wa(r)dw(r) + 6 + LaM,).
0 (A.6)

Consider now the denominator of (A.4). As in P89, we have:
I 1
T 2YAVA = 0?K4/g4 = 0° gw,; (r)2dr. (A7)

This proves (3), with ¢ = A, using (A.4), (A.6) and (A.7). To prove
(4) we only need to further derive the limit of 4 = T-1 37, a?
with %, the estimated residuals from (2).

§?‘4—T_IZ(U - atgi,)?

T
=T E(ﬁ{‘ g )? =TT - )T 9,58 - 9i)

t=2
+T71T% (@4 - 1)°T2 Z( -1

= T—l Z(ggA - gtA—l)2 + Op(l)

t=2

T —b

=Ty (- +T7'Y =Y + (A2 — A1)d* + 0p(1)

t=2
= 0’2 + 0'2L?4- (A.s)

The proof of (4), with ¢ = A, follpws usmg (A.6) through (A.8),
nothing that tsA = T-1VA/(YA - YVA4)/[5% T-?-YA'YA L]1/2,

PROOF OF (3)-(4) FOR MODEL C: Let §C be the residuals from
a projection of y; on {1,t,DU;, DT} (t = 1 ..,T). Straightforward
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algebra yields: 9€ = y: = Y~ — (t — A1)a1, if t < Tp, and §° =

Yt — Y- (t — A2)(c1 + c2), if t > Ty, where [c1,¢0)' = (Z2'2)~12'Y*
with:

1— A 0o - Ty =Y
: : P,
T, — Ay 0 yn, — Y
= , and Y*= _
Z Tb+1—A2 Tb+1—A2 an yn.*.l—Yb
T-Ady  T-4y . -7
(A'10)

We can write:

C2 BzZ]_ - B]_Zg

=)

[Cl] =D [ (B — Ba) s ] , with Z'Z = [Zl Zﬂ] , Z'Y*

where D = Z1Zy — 23; Z1 = Y 1% — ATAZ — (1 — \)TAZ
Zr = Tiinut? = (L - NT43, Br = S, ty — ATY 41— (1 -
A)T?bAz, B; = ZLTb atye— (1 - A)T?bAg. Using results in
P89, we have: T71A; — /2, T71A; — (14 ))/2, T™%/?B; =
ol rw(r)dr — (A/2) [ w(r)dr — (1/2)(1 + X) [Fuw(r)dr] = oDy,
T=8/2B, = o[f} rw(r)dr — (1/2)(1 + X) [y w(r)dr] = o[D11 — D12] =
—os, T~3Z1 — (1 = 2)3/12 + X3/12, T-32; — (1 — X)3/12. Hence
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T-5D — X3(1— \)3/144,

T1/201 - [)\3(1 - A)3/144]_10'[D11 - (Dn - Dlg)][(l - )\)3/12]
= 0‘12D12/A3,

T2 oy = [N3(1 = A)3/144) Lo [—9s{(1 — A)3/12+ X3/12}
- Dyu(1- /\)3/12]
= [A3(1 — \)3/144) " 1o[(D11 — D12){(1 - X)3/12
+23/12} — D11 (1 - 2)3/12]
= [A3(1 — X\)3/144]) " o[(D11 — D12)X3/12 — D12(1 - 2)3/12)
= —012D13/ X3 — 012¢5/(1 — A)® = —012D12/ X% — o9ps/9c,
and T1/2%(cy + c;) == —01bs/9c where gc, 15 and D, are defined in
P89 (Theorem 2) (see also Perron (1992)). The first-differences are
given by:
i —dli=e—c, t<Th,

—e+ 7 -V —(Ty+1- Ap)(c1 + ) + (Th — A)en,
t=Tb+1, '
=et—(61+02),t>Tb+1.

Using a similar vector notation as before with the addition of DU f=
(,...,0,1,..,1) : Y¢ —YS = E — ¢;i — ;DU + qD(TB), where

¢g=Y"- Y- (Ty — Az)(c1 + ¢3) + (Ty — Ay)ecy. Consider first the
numerator of the normalized least-squares estimator T'(&° — 1):

T-YC(YC - VC) =T 'VG[E - ¢1i — caDU + ¢D(TB)]
=T WGE+ T 2T 253 + 0p(1).

Similar to model A, we have

—-1yrCt 2 —_ .2 z
T'YYHE = o°Hc/9c =0 {wc(r)dr(r) + 6.
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Also:

T-Y2g = T-127* _T-127° _ YTy — 4)TY?(c; + ¢3)
+T7Y(T, — AT e

A 1
= o{A" 1 Jw(r)dr- (1- A)‘l{w(r)dr
0

— (1- X)¥s/(29c) + 6D12/3*}
= a{D4/[A1 - X)) = (1 = \)¥s/(29¢) + 6D12/X2} = o Lc;
T—1/2?7% — T—I/ZyTb _ T—1/2'f“ _ T—l (Tb _ A]_)TI/201

— o{w(N) - AL O?w(r)dr —6Dy2/)2} = oMo.

Hence:
T-1F0/(YC - ¥C) = o*{Hc/g9c + LcMc}

= 02{} we(r)dw(r) + 6§ + LeMc}.
0 (A.11)

The proof of (3), with i = C, follows using (A.11) and T-2Y.9YS,
= 0?Kc/g9c = 02 [} we(r)?dr. Derivations analogous to those for
Model A show that 34 => o2 + 02 L.

PROOF OF (5)-(6), MODEL B: Let #Z be the residuals from a
projection of y; on {1,t, DTy }(t = 1,...,T). Straightforward algebra
yields:

G =w-Y—(t-Dos+Tcs, t<T,
(A.12)
=y -Y-(t-Da—(t-Th—t)c, t>T,

where Y = T-1 Z;’;l yg, t = T71 Ef;l t, T = T2 ™ ¢ Note

that T-Y2Y = o [y w(r)dr, T-1f = 1/2, T7'T" = (1 — X)?/2.
The variables c; and ¢4 are defined by [c3, cs)’ = (W'W)~1W/(Y -7)
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where
1-% _—
. _z*
w=| . -
: 1-%
T-1 T-T,-1"

We Have T'/2c3 = —o3/gp and T/ 2cy = —o4/gp with g, 93
and 14 as defined in P89 (Theorem 2, see also Perron (1992)). The
first-differences are given by:

3 — Gy =e—cs, t<T,
(A.13)
= ey — (03 + C4), i> Tb:

or in vector notation: Y5 — VB = E — ¢3i — ¢4DU. Consider the

numerator of T(&% — 1):

T-'PB/(YB - VB)=T"'YZ/(E - c3i - ¢,DU)
=T-WEBE - TV2c,T~3*VE/DU + 0,(1)

= 0%{Hg /98 + (¥Y4/9B) {TWB("')d"'}

1

1 1
= oz{gwg(r)dw(r) +6+ (1/)4/g3){w3(r)dr}.
This proves (5) nothing that
R 1
T-2YBVE — 0?Kp/gp = o [ wp(r)dr.
0
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To prove (6), we simply need to show that 3% — o2, Using (A.13):

T T
=T ) (5 - &P, =T (@7 - 9

t=2
- (&B - 1)JE.,)?

=T Z(yt — G012 +op(1) =T Z(et —c3)?

t=2
+T—1 Z (et__ 3_04)2
t=Tp+1
T
=T Zef +0p(1) — o2, since c3 = Op(T-1/2) and
t=2

Cq = OP(T—I/z).

PRroor ofF (9)-(10): We prove the results for Model A only; the
proof for Model C is entirely analogous and therefore omitted. Let ygft
be the residuals from a regression of §#* on D(TB)s(t = 2,...,T) and
let g{ft_l be the residuals from a regression of {1 , on D(TB):(t =

oy T). Wehave,fort—2 N A yot_gt iftséﬂ,+1and0
otherw1se, y1 +—1 = Gf~, if t # Tp + 1 and 0 otherwise. Also, 4} —
yl +—1 = et—cif t # Tp+1 and 0 otherwise. The least-squares estimate
and t-statistic from regression (8) are given by:

T T
T(6A = 1) =T Y 9, 1 Wy — 91-)/T7° 2 W-1)? and
t=2 t=2

taA=T" lzylt l(yOt y1t /[ SAT 22( 1:-1)2]1/2,

t=2

where §4 = T! § o

t=2

with @t the estimated residuals from (8). Consider first the numerator
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of T(&4 —1):

T T
T Zijﬁt—l(ﬁg,t — Pem) =T} Zﬂ’:q(et -c)
t=2 =2

T
+T71 Z i1 (e —c)
t=Tp+2

T
=T giti(ee—c)
t=2
— T Y(yr, — Y* - Ty — A1)c)(eTy+1 —©)
T T
=T7'Y G 16+ 0p(1), using > 3 =0,
t=2 t=1

= g?Ha/ga = o2 } wa(r)dr(r) + 6.
0 (A.14)

Similarly the limit of the denominator of T(&* — 1) is given by:

T T, T
T2 2(371,:-1)2 =T72) (4,2 +T? Z (Fit,)?
t=2 t=2 t=Tp+2
T

=T72 Ad(gt—l)z o (37%,)2
t=2
T

=T* Z(?}ﬁ-l)z +0p(1)

1
= 0?Ka/ga = azgwA(r)zdr. (A.15)

This proves (9) using (A.14) and (A.15). To prove (10), we show that
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5% — o2, We have:
A et .

- &A'.ijiqt— 1)?

L}
h LM
Il
N
I
-
1
N
o~
3
O

' T
=T} E(ﬂsk — 9 — (@ = D))’

=T~ IZ(yOt yﬁt-—l)z

T
- T~2T(&" - )T~ Zyﬁt—l(ﬁét - 37{1,:—1)
t=2
T
+ T17% (64 — 1)27-2 Z(yl 1)?
=2
T
=T (¥ — 9f1)? + 0p(1), in view (A.14), (A.15) and (9),
t=2
Ty T
=T Z(et —c)?+T7! Z (et — €)% + 0p(1), using (A.13),
t=2 t=Tp+2 ’

T
=71 Z e% + Op(l), sincec = Op(T—l/Z),
t=2

2

— 0, as required.
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Table 1.
Percentage Points of the Distribution of {5; Model B.
A T 1.0% 2.5% 5.0% 10.0% 90.0% 95.0% 97.5% 99.0%
0.1 50 -430 -390 -358 -3.23 -1.28 -1.01 -0.73 -0.43
100 -4.15 -3.84 -358 -324 -130 -1.02 -0.76 -0.45
200 -4.071 -3.77 -348 -3.21 -1.27 -0.98 -0.70 -0.37
1000 -4.13 -3.81 -3.52 -3.22 -1.19 -0.86 -0.56 —0.24
co -415 -3.81 -3.52 -3.23 -1.19 -0.85 -0.55 -—0.22
0.2 50 —-4.55 -4.12 -3.81 -347 -1.44 -1.16 -0.88 -0.61
100 —-443 -4.11 -3.718 -346 -1.43 -1.16 -0.90 -0.58
200 -423 -397 -371 -340 -141 -1.13 -0.84 -0.49
1000 -434 -4.00 -3.71 -341 -1.36 -1.02 -0.70 -0.35
oo -434 -4.01 -3.72 -341 -1.35 -1.01 -0.70 -0.33
0.3 50 —-4.67 -425 -395 -3.62 -1.59 -1.32 -1.06 -0.77
100 —-454 -422 -392 -360 -160 -1.32 -1.07 -0.73
200 -432 -406 -3.80 -3.52 -1.56 -1.28 -1.01 -0.65
1000 -—-441 -4.09 -3.84 -3.54 -1.52 -1.19 -0.88 -0.54
co -441 -414 -385 -3.54 -1.52 -1.19 -0.87 -0.53
04 50 —-4.73 -4.34 -4.05 -3.71 -1.74 -147 -1.22 -0.94
100 —4.57 -4.23 -397 -365 -1.74 -147 -1.21 -0.91
200 -444 -4.12 -3.88 -3.57 -1.69 -142 -1.17 -0.86
1000 -446 -4.13 -390 -3.61 -1.69 -1.35 -1.06 —0.68
co —448 -4.15 -391 -3.61 -1.69 -1.35 -1.06 -—0.68
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Table 1.
Continuagao.
A T 1.0% 2.5% 5.0% 10.0% 90.0% 95.0% 97.5% 99.0%
0.5 50 —-4.77 -440 -409 -3.78 -1.85 -1.60 -1.38 -1.12
100 -4.57 -4.27 -399 -3.69 -1.83 -1.58 -1.36 -1.10
200 -447 -417 -391 -3.63 -1.80 -1.55 -1.32 -1.03
1000 -—-4.48 -4.16 -3.92 -3.64 -1.79 -1.48 -1.20 -0.87
oo -449 -417 -393 -365 -1.80 -147 -1.21 -0.85
0.6 50 -4.76 -440 -4.10 -3.79 -1.90 -1.68 -1.47 -1.25
100 —-4.59 -431 -399 -3.69 -1.88 -1.67 -145 -1.23
200 -445 -4.17 -392 -364 -1.8 -1.62 -140 -1.14
1000 -4.48 -416 -393 -364 -18 -1.56 -1.30 -0.99
o0 —450 -4.18 -394 -3.65 -1.85 -1.56 -1.29 —0.96
0.7 50 —-4.78 -—4.38 -—4.08 —/3.76 -1.89 -1.69 -1.52 -1.33
100 -4.55 —4.24 -3.95 -3.65 -1.88 -1.67 -1.50 -1.31
200 -443 -413 -3.89 -360 -1.83 -1.61 -143 -l.21
1000 -445 -4.12 -390 -3.60 -1.83 -1.57 -1.35 -1.06
00 -449 -413 -3.89 -360 -1.84 -1.57 -1.35 -1.06
0.8 50 -4.71 -430 -399 -3.68 -1.84 -1.65 -1.50 -1.37
100 —-4.53 -4.17 -3.89 -3.57 -1.82 -1.62 -1.47 -1.30
200 -442 -4.09 -3.82 -3.52 -1.719 -1.58 -1.42 -1.23
1000 -4.39 -410 -3.84 -3.54 -1.76 -1.54 -1.34 -1.11
00 -441 -4.09 -3.83 -3.55 -1.76 -1.53 -1.33 -111
0.9 50 -4.55 -4.15 -3.84 -3.52 -1.80 -1.63 -1.50 -1.38
100 -443 -4.08 -3.718 -347 -1.76 -1.58 -1.44 -1.30
200 -4.28 -398 -3.70 -341 -1.72 -1.53 -140 -1.25
1000 -4.28 -396 -3.72 -3.43 -1.66 -146 -1.29 -1.09
oo -4.29 -395 -3.72 -3.42 -1.67 -1.45 -1.26 -1.06
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Table 2.

Percentage Points of the Asymptotic Distribution of T(& - 1)
Two-step procedure for Model B.

A 1.0% 2.5% 5.0% 10.0% 90.0% 95.0% 97.5% 99.0%
0.1 -34.27 -29.24 -2490 -21.00 -3.61 -2.40 -1.48 -0.59
0.2 -37.02 -31.57 -27.45 -23.09 —-4.44 -3.13 -2.04 -0.92
0.3 -37.89 -33.10 -29.10 -24.55 -541 -3.92 -2.70 -1.55
0.4 -38.95 -33.48 -29.60 -25.33 -6.39 -4.69 -3.4T7 -2.09
0.5 -38.80 -33.52 -29.94 -25.57 -6.99 -534 -3.99 -2.70
0.6 -3842 -33.84 -29.74 -25.57 -7.19 -=5.52 -—-4.34 -=3.01
0.7 -38.02 -33.10 -28.97 -24.69 -6.77 -5.16 -—-4.09 -3.12
0.8 -37.26 -32.05 -27.97 -23.79 -5.96 -—-4.68 -3.79 —2.87
0.9 -35.19 -30.27 -26.07 -21.94 -5.16 -4.10 -3.37 -2.57
Table 3.

Percentage Points of the Asymptotic Distribution of infyca £5(A).
Two step procedure for Model B.

1.0% 2.5% 5.0% 10.0% 90.0% 95.0% 97.5%  99.0%
—-491 -4.62 -436 -—-4.07 -232 -212 -196 -1.78
Table 4. .
Percentage Points of the Asymptotic Distribution
of infyep T(&*(N) — 1).

1.0% 2.5% 5.0% 10.0% 90.0% 95.0% 97.5% 99.0%
Model A —47.84 —42.51 -38.16 —33.87 —13.10 —11.36 —9.94 —8.40
Model B —-46.54 —41.10 —36.51 —31.89 —10.18 —8.47 -7.12 -5.92
Model C —-56.23 —50.11 —45.21 —40.17 -16.48 —14.39 —12.69 —11.00
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