56. A Note on the Automorphism Group of an Almost Complex Structure of Type (n, n')

By Isao NARUKI

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1968)

1. Introduction. The aim of this paper is to prove a theorem which asserts the finite-dimensionality of the automorphism group of a sub-elliptic almost complex structure of type (n, n') on a compact manifold. Its settling requires only a theorem of R. S. Palais and a theorem due to J. J. Kohn and L. Hörmander.

2. Definitions and theorems. Throughout this paper we assume the differentiability of class C^{∞} . Let M be a manifold of dimension n + n' and let S be a subbundle of its complexified tangent bundle whose fibers are of complex dimension n.

Definition 1. Let M, S be as above and \overline{S} be the complex conjugate bundle of S. The pair (M, S) is called an almost complex structure (on M) of type (n, n') if it satisfies the following conditions; (i) S_p (the fiber of S over p) contains no real element except 0 (i.e. $S_p \cap \overline{S}_p$ =(0)) for any $p \in M$ (ii) [X, Y] is a cross-section of $S \oplus \overline{S}$ for any two cross-sections X, Y of S.

Definition 2. Let (M, S), (M', S') be two almost complex structures of type (n, n'). A diffeomorphism f of M onto M' is called an isomorphism of (M, S) onto (M', S') if $(df)_p$ maps S_p isomorphically onto $S'_{f(p)}$ for any $p \in M$. An isomorphism of (M, S) onto itself is called an *automorphism* of (M, S).

Let η be a real 1-form of M which vanishes on S and set $L_p^{\eta}(s, t) = i < (d\eta)_p | s \wedge \overline{t} >$ for $s, t \in S_p$. L_p^{η} is a hermitian form on S_p . For any fixed $p \in M$, we denote the real vector space of all such L_p^{η} 's by \mathcal{L}_p .

Definition 3. Let notations be as above. The almost complex structure (M, S) of type (n, n') is called *sub-elliptic* if it satisfies the following conditions; (i) $\dim_{\mathbb{R}} \mathcal{L}_p = n'$ (ii) \mathcal{L}_p contains no semi-definite form except 0 for any $p \in M$.

From now on we assume that M is compact. Let X^j $(j=1, 2, \dots, \pi)$ be a series of cross-sections of S such that X^j_p $(j=1, 2, \dots, \pi)$ span S_p for any $p \in M$, and let ξ^k $(k=1, 2, \dots, \rho)$ be a series of (complex) forms such that each ξ^k vanishes on S and such that ξ^k_p , $\overline{\xi}^k_p$ $(k=1, 2, \dots, \rho)$ span $T^*_p(M) \otimes C$ for any $p \in M$. (The existence of

I. NARUKI

such ξ^{k} 's is guaranteed by the condition (i) of Definition 1.) Assuming that the Sobolev norms $|| ||_{(s)}$ (s: real) on $C^{\infty}(M)$ are already introduced as usual, we also introduce $|| ||_{(s)}$ for vector fields by setting:

 $||X||_{(s)} = \sum_{k=1}^{\rho} (||\xi^k(X)||_{(s)} + ||\bar{\xi}^k(X)||_{(s)})$ X: a vector field.

Now we collect a few results which will be used in the proof of our theorem.

Theorem 1. Let M, S, X^{j} $(j=1, 2, \dots, \pi)$ be as above and define a differential operator $\mathfrak{X}: C^{\infty}(M) \to (C^{\infty}(M))^{\pi}$ by setting $\mathfrak{X}u = (X^{1}u, \dots, X^{\pi}u)$. Then \mathfrak{X} is sub-elliptic (i.e. $\exists c > 0 \quad \forall u \in C^{\infty}(M) \mid \mid u \mid \mid_{(\frac{1}{2})} \leq C \mid \mid \mathfrak{X}u \mid \mid_{(0)})$ if and only if (M, S) is sub-elliptic.

This theorem was first proved by J. J. Kohn [1] in the case n'=1. The general case is an easy consequence of Hörmander [2]. (See Theorems 1.1.5, Theorems 1.2.3.)

Now let f_t $(t \in R)$ be a 1-parameter subgroup of automorphisms of (M, S) and Y be its generating vector field. Then [X, Y] is a cross-section of S for any cross-section X of S. The converse is also true since M is compact, and we denote the Lie algebra of all such Y's by $\mathfrak{A}(M, S)$ (i. e. $\mathfrak{A}(M, S) = [Y \in \Gamma(T(M)) | [X, Y] \in \Gamma(S)$ for any $X \in \Gamma(S)$]). Then a theorem of R. S. Palais [3] asserts.

Proposition 1. The automorphism group of (M, S) is a Lie transformation group if and only if $\mathfrak{A}(M, S)$ is finite-dimensional.

We are now ready to prove the theorem announced in the introduction.

Theorem 2. The automorphism group of (M, S) is a Lie transformation group on M if (M, S) is a sub-elliptic almost complex structure of type (n, n') on a compact manifold M.

Proof. By Proposition 1 it is sufficient to prove that $\mathfrak{A}(M, S)$ is finite-dimensional. Suppose that Y is in $\mathfrak{A}(M, S)$ and that $\xi^{k}(k=1, 2, \dots, \rho)$, $X^{j}(j=1, 2, \dots, \pi)$ be as before. Taking the Lie derivative of $\xi^{k}(X^{j})=0$ with respect to Y, we have

$$\mathcal{L}_Y(\xi^k)(X^j) + \xi^k([X^j, Y]) = 0.$$

Since the second term vanishes by the definition of $\mathfrak{A}(M, S)$, we obtain $\mathcal{L}_{Y}(\xi^{k})(X^{j})=0.$

Using the formula $\mathcal{L}_{Y}(\omega) = d(Y \sqcup \omega) + Y \sqcup d\omega$, we rewrite this into $X^{j}(\xi^{k}(Y)) = \langle d\xi^{k} | X^{j} \wedge Y \rangle$.

Notice that the right hand side contains no differentiation of Y. Thus, applying Theorem 1 to the above

$$||\xi^{k}(Y)||_{(s)} \leq C ||Y||_{(0)}$$

where C is a positive constant independent of $Y \in \mathfrak{A}(M, S)$. Since Y is a real vector field, we obtain also

$$||\,\bar{\xi}^{k}(Y)\,||_{(\frac{1}{2})} = ||\,\xi^{k}(Y)\,||_{(\frac{1}{2})} = ||\,\xi^{k}(Y)\,||_{(\frac{1}{2})} \le C\,||\,Y\,||_{(0)}.$$

Then by the definition of the $|| ||_{(s)}$ for vector fields, we get $|| Y ||_{(t)} \le C || Y ||_{(0)}$ for $Y \in \mathfrak{A}(M, S)$ if we take some larger C > 0. Thus $\mathfrak{A}(M, S)$ is finite-dimensional. Q.E.D.

The author thanks Professors S. Matsuura and N. Tanaka for a number of stimulating conversations on this subject.

References

- J. J. Kohn: Boundaries of complex manifolds. Proc. Minnesota Conference on Complex Analysis. pp. 81-94, Springer-Verlag, Berlin (1965).
- [2] L. Hörmander: Pseudo-differential operators and non-elliptic boundary problems. Ann. Math., 83, 129-209 (1966).
- [3] R. S. Palais: A Global formulation of the Lie theory of transformation groups. Mem. Amer. Math. Soc., 22 (1957).