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Abstract. It is established that if a time series satisfies the Berman condition,

and another related (summability) condition, the result of filtering that series

through a certain type of filter also satisfies the two conditions. In particular

it follows that if Xt satisfies the two conditions and if Xt and at are related

by an invertible ARMA model, then the at satisfy the two conditions.

1 Introduction

The condition (on the autocovariances γk of a stationary time series)

lim
k→∞

|γk| lnk = 0 (1.1)

was introduced by Berman (1964, Theorem 3.1, p. 510). It appears to have been

adopted as a fundamental sufficient condition in proving results about extreme

value distributions for correlated data. It is cited for instance in Leadbetter et al.

(1983, equation 2.5.1, p. 444), Lindgren and Rootzén (1987, equation 5.1, p. 248),

Leadbetter and Rootzén (1988, equation 4.1.1, p. 80), Galambos (1978, Theo-

rem 3.8.2, p. 169; see also p. 198), and in Embrechts et al. (1999, Theorem 4.4.8,

p. 217), where it is described as being “very weak.” It appears to be effectively

the weakest condition that one can assume and still obtain positive results in this

context.

In Chareka, Matarise and Turner (2006) the authors found it necessary to as-

sume, in addition to the Berman condition, another condition

∞
∑

k=1

|γk|

kε
< ∞ for some ε < 1. (1.2)

This is given as condition (7) on page 598 of Chareka et al. (2006). In that paper

the authors find it expedient to deal with the residuals from fitting an ARMA model

to the time series Xt under consideration. They are thereby concerned with the in-

novation terms of such a model. Suppose that Xt and at are related via an ARMA

model in which the at play the role of the innovations. Chareka et al. remark that
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if the time series Xt is a fractionally integrated ARMA (“FARIMA”) time series

(whence it satisfies the two conditions of interest (1.1) and (1.2)) then the innova-

tions at also form a FARIMA series provided that the model is invertible. Hence

the at satisfy the two conditions of interest as well.

Chareka et al. assert that more is true: if Xt is any stationary time series sat-

isfying (1.1) and (1.2) and if Xt and a series of innovations at are related by an

invertible ARMA model, then the at will also satisfy these conditions. In this note

we present the proof of that claim.

We now remark that interest is focussed on the at and these quantities are

thought of as being the output of a filter, with the Xt being the input. However

the phrasing of the claim, with the at being the innovations of an ARMA model,

makes it appear as if the at are the input to a filter, which is rather confusing. The

required condition of invertibility of the ARMA model is also somewhat discon-

certing. Finally, it turns out that a slightly stronger claim may be established. We

therefore rephrase the assertion to be proven, in a stronger and less confusing form,

and state the original claim as a corollary of the rephrased assertion.

2 The main result

We state the result to be proven as follows:

Theorem. Suppose that Xt is a stationary time series with autocovariances γk

satisfying conditions (1.1) and (1.2) and that the series Yt is the output of a linear

filter with input Xt given as follows:

Yt =

∞
∑

n=0

ψnXt−n.

Suppose that the ψn are summable (whence the Yt form a stationary time series).

Furthermore suppose that the ψn satisfy the condition

|γ W
k | ≤ Cr |k| for all k (2.1)

for some constants C and r , 0 < r < 1, where

γ W
k =

∞
∑

n=−∞

ψnψn+k

and where we set ψn = 0 for n < 0 (to simplify the notation). Then the autocovari-

ances γ Y
k of the series Yt satisfy (1.1) and (1.2) as well.

Proof. We remark that the γ W
k are in fact the autocovariances of a time series Wt

defined by

Wt =

∞
∑

n=0

ψnbt−n,
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where bt is white noise with variance 1.

Observe that

γ Y
k =

∞
∑

n=−∞

∞
∑

m=−∞

ψnψmγm−n+k

=

∞
∑

h=−∞

∞
∑

n=−∞

ψnψn+hγk+h

=

∞
∑

h=−∞

γ W
h γk+h.

To show that the γ Y
k satisfy condition (1.1) we write

γ Y
k =

−k−1
∑

h=−∞

γ W
h γk+h +

−1
∑

h=−k

γ W
h γk+h +

∞
∑

h=0

γ W
h γk+h

=

∞
∑

j=1

γ W
k+jγj +

k−1
∑

j=0

γ W
k−jγj +

∞
∑

j=0

γ W
j γk+j

= ξ1(k) + ξ2(k) + ξ3(k) (say).

To deal with ξ1(k) we observe that

|ξ1(k)| ln k ≤

∞
∑

j=1

|γ W
k+j ||γj | lnk ≤ Cγ0r

k lnk
r

1 − r

using (2.1). This quantity → 0 as k → ∞ since r < 1.

Similarly

|ξ3(k)| ln k ≤

∞
∑

j=0

|γ W
j ||γk+j | ln(k + j) ≤ C

∞
∑

j=0

rj |γk+j | ln(k + j).

Take δ > 0; for sufficiently large k, |γk+j | ln(k + j) ≤ δ for all j ≥ 0. Hence

|ξ3(k)| ln k ≤
δ × C

1 − r

for sufficiently large k, and since δ is arbitrary, |ξ3(k)| lnk → 0 as k → ∞.

To deal with the middle term ξ2(k) we note that

|ξ2(k)| ≤ C

k−1
∑

j=0

|γj |r
k−j

= C

[

[k/2]
∑

j=0

|γj |r
k−j +

k−1
∑

j=[k/2]+1

|γj |r
k−j

]
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≤ C

[k/2]
∑

j=0

γ0r
k−j + C

k−1
∑

j=[k/2]+1

|γj |r
k−j

≤ Cγ0
rk/2

1 − r
+ Cγj∗(k)

r

1 − r
,

where j∗(k) = argmax{|γj | : [k/2] + 1 ≤ j ≤ k − 1}.

Hence

lnk × |ξ2(k)| ≤ C

[

γ0 lnk
rk/2

1 − r
+ (lnk/2 + ln 2)

(

γj∗(k)

r

1 − r

)]

≤ C

[

γ0 lnk
rk/2

1 − r
+

(

ln j∗(k) + ln 2
)

(

γj∗(k)

r

1 − r

)]

which → 0 as k → ∞.

We have thus established that the autocovariances γ Y
k satisfy (1.1). We now

proceed to show that condition (1.2) is satisfied:

∞
∑

k=1

|γ Y
k |

kε
=

∞
∑

k=1

∣

∣

∣

∣

∣

∞
∑

h=−∞

γ W
h

γk+h

kε

∣

∣

∣

∣

∣

≤

∞
∑

h=−∞

|γ W
h |

∞
∑

k=1

|γk+h|

kε

=

−1
∑

h=−∞

|γ W
h |

∞
∑

k=1

|γk+h|

kε
+

∞
∑

h=0

|γ W
h |

∞
∑

k=1

|γk+h|

kε

=

∞
∑

j=1

|γ W
j |

∞
∑

k=1

|γk−j |

kε
+

∞
∑

h=0

|γ W
h |

∞
∑

k=1

|γk+h|

kε

≤

∞
∑

j=1

|γ W
j |

∞
∑

k=1

|γk−j |

kε
+

∞
∑

h=0

|γ W
h |

∞
∑

k=1

|γk+h|

(k + h)ε

(

k + h

k

)ε

≤

∞
∑

j=1

|γ W
j |

∞
∑

k=1

|γk−j |

kε
+ ζ

∞
∑

h=0

|γ W
h |(1 + h), where ζ =

∞
∑

k=1

|γk|

kε

=

∞
∑

j=1

|γ W
j |

[ j
∑

k=1

|γk−j |

kε
+

∞
∑

k=j+1

|γk−j |

kε

]

+ ζ

∞
∑

h=0

|γ W
h |(1 + h)

≤

∞
∑

j=1

Crj

[

γ0

j
∑

k=1

1

kε
+

∞
∑

ℓ=1

|γℓ|

ℓε

(

ℓ

ℓ + j

)ε
]

+ ζ

∞
∑

h=0

Crh(1 + h)

≤ C

∞
∑

j=1

rj

[

jγ0 +

∞
∑

ℓ=1

|γℓ|

ℓε

]

+ ζC

∞
∑

h=0

rh(1 + h)
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≤ C

∞
∑

j=1

rj [jγ0 + ζ ] + ζC

∞
∑

h=0

rh(1 + h)

= C

[

γ0

∞
∑

j=1

jrj + ζ

∞
∑

j=1

rj + ζ

∞
∑

j=0

rj + ζ

∞
∑

j=1

jrj

]

= C

[

(γ0 + ζ )

∞
∑

j=1

jrj + ζ
1 + r

1 − r

]

< ∞

since
∑∞

j=1 jrj converges. (The radius of convergence of this power series is 1,

and by assumption 0 < r < 1.) �

3 The original claim

We state the original claim as:

Corollary. Suppose that Xt satisfies conditions (1.1) and (1.2) and that Xt and at

are related by the invertible ARMA model

φ(B)Xt = θ(B)at ,

where φ(z) and θ(z) are polynomials and B is the “backshift” operator. Then the

at satisfy conditions (1.1) and (1.2) as well.

Proof. The invertibility of the model tells us that at can be expressed as

at =

∞
∑

n=0

ψnXt−n,

where

φ(z)

θ(z)
= ψ(x) =

∞
∑

n=0

ψnz
n

with the coefficients ψn being summable. (It is more usual in such a context to

denote the coefficients of the series expansion as “πn” rather than “ψn,” but to

make clear the relationship to the main result we eschew the πn notation.)

Now if we set

Wt =

∞
∑

n=0

ψnbt−n,

where bt is white noise (with variance 1) then basic results about ARMA time

series (see, e.g., Brockwell and Davis (1991, Chapter 3, problem 3.11)) tell us

that the autocovariances γ W
k of Wt satisfy (2.1). Hence the claim follows by the

theorem proven in Section 2. �
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