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SUMMARY

A comparison is made of implementations of consistent tangent operators that arise in implicit
integration of Von Mises and Drucker—Prager vield criteria. When computing the consistent tangent
operator a matrix inversion has to be performed at integration point level. The consequences of different
formulations of the consistent tangent operator on the numerical accuracy are assessed.

1. INTRODUCTION

In recent years the concept of return-mapping algorithms has become popular for integrating
differential stress—strain relations in plasticity. After application of the return-mapping
scheme, a bijective relation has been established between the strain increment and the stress
increment, When such a scheme is utilized in a Newton—Raphson strategy for achieving
equilibrium at global level, this bijective relationship has to be differentiated in order to obtain
the rate equations. Since a bijective relationship between stress and strain increments resembles
the equations of a deformation plasticity theory, it is evident that a term arises during the
differentiation process in which the plastic flow direction is differentiated with respect to the
stress tensor. This observation has first been made by Simo and Taylor' and by Runesson
et al.,? and the result is known as the consistent tangent operator,

During the construction of the consistent tangent operator a ‘modified elastic compliance’
matrix arises, which has to be inverted locally, i.e. in each integration point that is yielding.
Principally, two different possibilities exist. Either the derivative of the flow direction with
respect to the stress tensor is directly added to the elastic compliance matrix, or the compliance
matrix is taken out of the brackets, so that the derivative of the plastic flow direction with
respect to the stress tensor multiplied by the elastic stiffness matrix is added to the identity
matrix. In either case this relation must be inverted to make the stress rate an explicit function
of the strain rate, which is required for the tangent operator. Below we shall show that,
depending on the value of Poisson’s ratio and the possible existence of singularities in the yield
surface, large differences may arise during the numerical inversion of these matrices. This will
be exemplified for the yield functions of Von Mises and Drucker—Prager.

CCC 0748-8025/94/121021-05 Received 29 November 1993
© 1994 by John Wiley & Sons, Ltd. Revised 12 July 1994



1022 R. DE BORST AND A. E. GROEN

2. MODEL FORMULATION
A first step in a return-mapping algorithm is the computation of a trial stress state
o' =0 +D Ae (1)

with ¢° the initial stress state, D the elastic stiffness matrix and Ae the total strain increment.
When the trial stress violates the condition that the yield function is non-positive,
f(o*, x%) <0, with x° a scalar-valued hardening parameter evaluated at the beginning of the
loading step, the trial stress is mapped onto the yield surface via the incremental version of
the flow rule

AeP = Ahm(o") 2)

with &P the plastic strain tensor, A\ the amount of plastic flow within this loading step and
m the flow direction. The fact that m is determined for ¢®, the stress at the end of the loading
step, implies that a fully implicit scheme is utilized. In consideration of the additive split of
the total strain increment into an elastic component Ae® and a plastic component AeP, we
obtain for the total incremental relation

¢"=0¢"+D Ae— A\Dm(c") (3)
Differentiation of equation (3) leads to

6=Dé—AD 2™ 5 \Dm @)
do

Defining the ‘modified elastic compliance matrix’ as

~1
H= [D“+A)\ QT} (5
do
or equivalently
-1
H= [H—A)\D éﬂ] D (6)
do
equation (4) can be recast in the form
o=Hé - \Hm 0

Formally, equations (5) and (6) are equal. However, during numerical inversion, differences
can occur, as shown below.
Now consider the Drucker—Prager yield function

f=JGe"™Po) +arxTo—k (8)

with & and k material parameters, = is a vector that projects onto the hydrostatic axis in the

stress space and P is a projection matrix that projects a stress ¢ onto the w-plane. Next we
define m as
3Po

~2]3¢"Po)

which incorporates non-associated flow in case the dilatancy factor g8 differs from the friction
factor «. For this definition of the flow direction H can be elaborated as

_ 3 0"PoP - Poo'P] !
H=[D" 14 Jm
[ AN UTPUJ(UTPG)] (19)

m + B )]
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or

3 . o"'PoP —Poo P!
H=|1+ax pp2ELol—Foo P
[ M JZ D o"Po [(c"P0) } D (n

respectively, depending on whether equation (5) or equation (6) is taken as the point of
departure. It is noted that, because of non-commuting matrices, the expression between
brackets in equation (11) becomes non-symmetric. However, symmetry is preserved for H.

3. ACCURACY ANALYSIS

The accuracy of a matrix inversion can be characterized with the aid of the condition number.
This quantity is defined by R = M./N;, with X\, the largest eigenvalue and A\; the smallest
eigenvalue of the matrix.? When the inverse of the condition number, R™!, drops below the
machine precision, matrix inversion is no longer possible.* For the less restrictive case that the
inverse of the condition number, R™!, is smaller than the square root of the machine precision,
the matrix inversion is no longer reliable.?

Below we shall firstly assess the impact of the degree of elastic compressibility on R™* for
a stress point that is located on a smooth part of the Drucker—Prager yield surface, and then
we shall investigate the case that it is near the apex of the yield cone. In both cases a Young’s
modulus E = 10* MPa and a flow magnitude AN = 1075 has been assumed. A threshold Jacobi
method? has been used to extract the eigenvalues of H set up for a plane-strain configuration.
For the first case — the smooth part of the yield surface — the stress components have been
assigned the values o, = 1 MPa, 0, = 1 MPa, 03 =0, so that J§e"Pe) = 1. The inverse of the
condition number, R™!, been plotted in Figure | as a function of Poisson’s ratio » for both
formulations (5) and (6), or in this specific case for the Drucker—Prager yield function
equations (10) and (11). We observe that, with increasing values of Poisson’s ratio, R™!
deteriorates for formulation (10), but that it improves when equation (11) is used. For the case
that the stress point is near the apex — o1 =1 MPa, g2 =1 MPa, g3 =1+ 107! MPa, so that
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Figure 1. R™' as a function of Poisson’s ratio » for J(%UTPa) =1 MPa
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Figure 2. R™! as a function of Poisson’s ratio » for J(30™Po)=10"'*MPa

J(%UTPG) = 107'¢ — the difference between both formulations is even more pronounced, since
the second term in equations (10) and (11) then becomes relatively more important with respect
to the first term. The result of the eigenvalue analyses is summarized in Figure 2. As in the
previous case the condition of (11) tends to improve when the incompressibility limit is
approached, but again it becomes worse for equation (10). For » > 0-22, R™! even drops
below the machine precision of the employed Silicon Graphics Indigo R4000 workstation,
which implies that H cannot be inverted.

The better condition of H formulated according to equation (11) is due to the fact that the
multiplication of D with dm/de eliminates the hydrostatic component of D, or, equivalently,
cancels the factor 1 — 2p in the denominator of D. This holds true for the Drucker—Prager and
Von Mises yield criteria, and also for the Rankine yield function, since this criterion can also
be cast in the format (8) with a flow direction vector according to (9), but with a different
choice for P.

4, CONCLUDING REMARKS

Two different ways to implement the consistent tangent operator in elastoplasticity have been
investigated with respect to their accuracy in cases of near-incompressible elasticity. It has been
shown for the Drucker—Prager vield function that the formulation in which the elastic
compliance matrix is taken out of the brackets prior to inversion is superior in the sense that
it does not suffer from ill-conditioning of the local ‘modified elastic stiffness matrix’ when
Poisson’s ratio approaches a half. When the stress point is near the hydrostatic axis this ill-
conditioning may even lead to an impossibility to invert the matrix, since the inverse of the
condition number can become lower than the machine precision. Minor disadvantages of the
more robust formulation are that locally non-symmetric matrices may arise and that an
additional matrix multiplication is required.
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