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A NOTE ON THE CHEBYSHEV SET PROBLEM IN NORMED

LINEAR SPACES

SAMSON OWITI, BENARD OKELO∗, JULIA OWINO

Abstract. Best approximation (BA) is an interesting field in functional anal-
ysis that has attracted a lot of attention from many researchers for a very long
period of time up-to-date. Of greatest consideration is the characterization of
the Chebyshev set (CS) which is a subset of a normed linear space (NLS) which
contains unique BAs. However, a fundamental question remains unsolved to-
date regarding the convexity of the CS in infinite NLS known as the CS prob-
lem. The question which has not been answered is: Is every CS in a NLS
convex?. This question has not got any solution including the simplest form of
a real Hilbert space (HS). In this note, we characterize CSs and convexity in
NLSs. In particular, we consider the space of all real-valued norm-attainable
functions. We show that CSs of the space of all real-valued norm-attainable
functions are convex when they are closed, rotund and admits both Gateaux
and Fréchet differentiability conditions.

1. Introduction

Studies in approximation theory have been carried out by many mathemati-
cians over decades (see [1], [2], [10] and [21] and the references therein). The
most important basic question in the field of BA is the concern about the exis-
tence of BAs [7]. This is because BA theory has several applications involving
finding solution to systems of equations [10]. This work is useful in contributing
knowledge in functional analysis by providing at least a partial solution to the
CS problem [18]. It will also be useful in solving convex optimization problems
and finding solutions to differential equations [16]. Best approximation (BA) is
an interesting field in functional analysis that has attracted a lot of attention
from many researchers for a very long period of time up-to-date (see [3] and [4],
[9] and the references there in). Of greatest consideration is the characterization
of the CS which is a subset of a NLS which contains unique BAs [24]. Approx-
imation theory involves obtaining best approximation of functions using simple
functions whether they are linear or nonlinear [4], [6] and [15]. Martin [11] char-
acterized remotality of sets with regard to normed linear spaces and in particular
for convex sets in Banach spaces. However, the convexity of the Banach spaces
was not done in general due to the complex nature of spaces. Mazaheri [14] also
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considered weakly-Chebyshev subspaces for NLSs of Banach spaces and did their
characterization in terms of nearest and farthest points via distance functions.
However, the authors could not give a particular best approximation for the CSs
and their convexity even for the simplest case [13] of a HS of l2. Zalinescu [26]
on the study of convex sets and their characterizations in general spaces deter-
mined optimization criteria for vector spaces and left open a question regarding
convexity of these spaces. More recently, Mazaheri and Salehi [14] studied CSs
and considered conditions under which they are convex. However, they could not
determine convexity of the CSs in NLSs even for the simplest set up of HSs. It is
worth noting that various techniques have been used in trying to get a solution
to the CS problem [4]. The first technique we discuss in this work is the Bunt-
Motzkin Theorem. This theorem is a result on the converse of the CS problem.
It asserts that if a set C is Chebyshev then it implies that it is convex in Bergman
spaces [5]. However, this assertion still remains unknown if it holds for infinite
dimensional Hilbert spaces. The other technique is the Frèchet differentiability
[8]. This is a derivative defined mostly in normed spaces. Frèchet differentiability
occurs on real-valued functions or vector valued functions of multiple variables. It
is applicable mostly and particularly on directional derivative where the continu-
ity of the map is essential [19]. Gateaux differentiability conditions are also very
instrumental conditions in BAs. A Gateaux derivative is a fundamental principle
in differential calculus which is a generalization on functions which are continuous
on Banach spaces. It is useful in carrying out approximations in locally convex
spaces [20]. It is useful in formalization of functional derivatives which are impor-
tant in best approximations in calculus of variations. Moreover, its useful since it
takes care of nonlinear functions also. Best approximation techniques have also
been employed in CS problem [24]. These are techniques in approximation the-
ory which useful in obtaining best approximation results for functions in various
spaces. They include: Polynomial approximations; Chebyshev approximations;
Remez techniques and algorithms; and Pade’ approximation techniques for opti-
mal polynomials. Despite the fact that these techniques have been used in trying
to solve CS problem, the answer to this problem is still elusive [23]. It is very
important to unveil a detailed account of research work which have been done in
approximation theory. In particular, we consider literature on conditions under
which subsets of NLSs are Chebyshev. We also discuss the characterizations on
distance functions of CSs in NLSs and finally give a review on investigations on
convexity of CSs in various NLSs [6]. We begin with some brief account on the
various studies on CSs and their subsets. CSs are important sets in approxima-
tion theory due to their properties. A lot of characterizations have been done on
these sets with interesting results obtained. Their subsets are also interesting as
they carry hereditary properties in them. Fletcher and Moors [7] characterized
CSs and showed that a CS is particularly a subset of a NLS which has properties
that helps in the establishment of best approximations results which are unique.
The authors investigated characteristics of the metric projection and obtained
necessary and sufficient conditions under which a a subset of a NLS becomes a
CS and also conditions for a CS to satisfies convexity properties. Moreover, the
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authors gave an example where they constructed a nonconvex CS as shown in
the next result.

Proposition 1.1. ([7], Proposition 2.12) Let W be a NLS. A subset of W which
is closed is also convex if and only if it is midpoint convex.

Proposition 1.1 characterizes NLSs in terms of midpoint convexity and shows that
a subset of a NLS can be convex if its closed and satisfies midpoint convexity.
However, this result does not indicate whether the space W is convex in general
even if it is a CS. It is noted that closedness is useful for midpoint convexity but
not for convexity in general.
Vlasov [25] in the earlier years characterized normed spaces in terms of approx-
imate properties. Historically, it can be shown in brief, the main contributions
of researchers in this field of study. In 1934 Bunt proved the convexity of a CS
in the real plane. Also 1938 Kritikos followed Bunt’s results and extended the
theorem of Bunt to an n-dimensional real space. This was followed by the work of
Efimov and Stechkin in 1961 which showed that a CS of a general HS which is ap-
proximately compact satisfies convexity condition. To conclude the history, Klee
considered weak closedness and proved that CS which is weakly closed satisfies
the convexity condition. This history and more details can be found in Man-
tegazza [9]. To consider particular cases, the author in [24] considered proximal
sets which are related to Chebyshev sets and gave the result below.

Theorem 1.2. Let W be a NLS. Consider J as a proximinal set of W . Then J

is nonempty and closed.

Theorem 1.2 considers proximal sets and characterizes closedness and the content
of the sets. However, it becomes very difficult to come up with a structure of
the metric projection function in terms of its geometry. Nonetheless, an excep-
tion on this assertion can be considered when J is a subspace. Next we consider
distance functions of Chebyshev sets in NLSs. Distance functions are also im-
portant in characterizing CSs. By the result of Asplund [1], the CS problem was
given a different dimension to consider metric projections as shown in the next
proposition.

Proposition 1.3. ([7], Proposition 2.2) Let W be a NLS. Consider J as a CS
of W . Then the distance function for J satisfies nonexpansivity and continuity
conditions.

Proposition 1.3 describes CSs and their distance functions in terms of continuity
and nonexpansivity in a general set up. Lastly we consider CSs and convexity.
We consider literature on the key question of this study, that is, Is every CS in
HS convex?. We begin with the following analogy of the result of Borwein [5] on
closedness, reflexivity and rotundity of Hilbert spaces.

Lemma 1.4. ([5], Fact 3) All CSs are closed and all closed sets satisfying convex-
ity condition are Chebyshev in a rotund reflexive space. Particularly, all nonempty
closed sets satisfying convexity condition in HS are Chebyshev.

Lemma 1.4 gives an elaborate characterization of Chebyshev sets and convexity
in terms of reflexivity and rotundity that requires uniqueness property however
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this does not answer Cs problem in general.
In summary, with all these considerations, a fundamental question remains un-
solved to-date regarding the convexity of CSs in infinite NLSs known as the CS
problem. The question which has not been answered is: Is every CS in a NLS
convex?. This question has not been answered even in the simplest case of a real
HS. In this regard, it is worth characterizing CS and convexity in NLSs. We also
attempt to answer this question partially in a particular case of the NLS space of
all norm-attainable real-valued functions. This work is organized as follows: For
the first section, we begin with a mathematical background as given in this intro-
duction followed with the preliminary basic concepts that helps us to understand
this work. We then provide the main results and finally the conclusion.

2. Preliminaries

For a better understanding of this work, we outline the basic definitions that are
key to this note on CS and convexity in NLSs.

Definition 2.1. ([8]) Let W be a NLS and G be a nonempty subset of W .
Consider the particular point ζ ∈ W . We define the distance from the point ζ to
G by d(ζ, G) = infη∈G ‖ζ − η‖, and the map ζ 7→ d(ζ, G) is called the distance
function for G. We call ζ the nearest point in G.

Definition 2.2. ([15]) A set G in a NLS W is called a CS if every point in W

has a unique nearest point in G. That is, CS is a subset of a NLS that admits
unique best approximations.

Definition 2.3. ([8]) Let D be a nonempty set. A subset E of D is said to be
convex if for all ζ, η ∈ E the line segment connecting ζ and η is in E, that is,
(1− α)ζ + αη is in E for ζ, η ∈ E, and α ∈ [0, 1].

At this point, we proceed to give the main results of this paper. These results are
restricted to the space of all norm-attainable real-valued functions. A function φ

is said to be norm-attainable if there exists a unit vector ξ in the domain of φ
such that ‖φ(ξ)‖ = ‖φ‖. The space of all norm-attainable real-valued functions is
a NLS. For details on norm-attainability, see [16]-[20] and the references therein.

3. Main results

We provide the main results of this note in this section. We characterize CSs and
their subsets and tackle the CS problem. We begin with the following proposition
which considers distance functions and Gateaux differentiability. We note that
all the spaces and their subspaces are all nontrivial and are strictly NLS spaces
of all functions that are norm-attainable unless otherwise stated.

Proposition 3.1. Let Q be a NLS space of all norm-attainable real-valued func-
tions and J be a closed and smooth subset of Q. Let ζ ∈ Q\J and η the nearest
point for ζ in J, then Gateaux differentiability condition of Q holds for (ζ − η).
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Proof. Since the norm of Q is Gateaux differentiable from the statement of the
proposition, it suffices to prove the exixtence of the unique limit of the the

Gateaux derivative lim
l→0

dJ(ζ + l(x− η))− dJ(ζ)

l
. From [16], we deduce that if

l > 0 then the limit exists. For the uniqueness, we see from the result of [7]
that the limit of the derivative is unique. It follows then that 〈d′J(ζ), x− η〉 holds
for dJ(ζ). This completes the proof. �

Proposition 3.1 leads to the interesting question as to what happens when Q is
rotund. We see this in the next lemma.

Lemma 3.2. Let Q be a NLS space of all norm-attainable real-valued functions
and J be a closed and smooth CS of Q. Let ζ ∈ Q\J and ∂dJ(ζ) be a singleton
set. Then the following conditions hold if the first dual of Q is rotund:
(i). φ on J is uniformly continuous.
(ii). φ on J is totally bounded.
(iii). J satisfies convexity condition.
(iv). dJ satisfies convexity condition.
(v). dJ satisfies Gateaux differentiability at ζ.

Proof. We proceed with the proof as follows:
Case (i). φ on J is uniformly continuous since every space of norm-attainable
functions contains continuous functions.
Case (ii). φ on J is totally bounded follows immediately from case (i).
Case (iii). J satisfying convexity condition follows immediately from the condi-
tions of the statement of the lemma.
Case (iv). dJ satisfying convexity condition follows from the fact that J satisfies
convexity condition.
Case (v). Since dJ satisfies convexity condition and is uniformly continuous at ζ
and from Proposition 3.1 ∂dK(ζ) is a singleton set, dJ satisfies Gateaux differen-
tiability at point ζ and we attain equality of d′J(ζ) and ∂dJ(ζ). This completes
the proof. �

At this point, we state the main theorem of our work that characterizes convexity
of Q in terms of Fréchet differentiability condition.

Theorem 3.3. Let Q be a NLS space of all norm-attainable real-valued functions
and J be a closed and smooth CS of Q. Let ζ ∈ Q\J and ∂dJ(ζ) be a singleton
set. Then dJ satisfies Fréchet differentiability condition at ζ.

Proof. It is known from [25] that the norm of Q and hence the dual norm of Q∗

satisfies Fréchet differentiability condition. Also from Lemma 3.2 it implies that
Q is strictly reflexive. Moreover, Q\J has the nearest point ζ and so J of Q
satisfies Fréchet differentiability condition and so is Q. �

As consequences of Theorem 3.3, we state the following corollaries.

Corollary 3.4. Every distance function of a CS of the NLS space of all norm-
attainable real-valued functions is Fréchet differentiable.
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Proof. Follows from the conditions of Lemma 3.2 and Theorem 3.3. The rest is
clear from the fact that every rotund CS is convex. �

Corollary 3.5. Every distance function of a CS of the NLS space of all norm-
attainable real-valued functions is Gateaux differentiable.

Proof. Follows immediately from the conditions of Theorem 3.3 and Corollary 3.5
the proof is complete. �

4. Conclusion

In conclusion, a fundamental question that remains unsolved to-date regarding
the convexity of the CS in infinite NLS known as the CS problem has been studied
in this work. This CS problem which has not been solved in totality (even in this
note) states that: Is every CS in a NLS convex? This question has not got any
solution even in the simplest form of a real Hilbert space (HS). In this note, we
have characterized Chebyshev sets and their convexity in NLSs. We considered
the NLS space of all real-valued norm-attainable functions. We have shown that
Chebyshev subsets of the NLS space of all real-valued norm-attainable functions
are convex when they are closed, rotund and admits both Gateaux and Fréchet
differentiability conditions.
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