A NOTE ON THE COMBINATORIAL PRINCIPLES $\diamond(E)$

KEITH J. DEVLIN

ABSTRACT. Shelah has proved that \diamond does not imply that $\diamond(E)$ holds for every stationary set $E \subseteq \omega_1$. We prove that, in the other direction, whenever $\diamond(E)$ holds there are disjoint stationary sets $F, G \subseteq E$ such that both $\diamond(F)$ and $\diamond(G)$ hold.

1. Introduction. Recall that if $E \subseteq \omega_1$, $\diamond(E)$ asserts the existence of a sequence $\langle S_{\alpha} | \alpha \in E \rangle$ such that $S_{\alpha} \subseteq \alpha$ and, whenever $X \subseteq \omega_1$, then the set $\{\alpha \in E | X \cap \alpha = S_{\alpha}\}$ is stationary. \diamond is the principle $\diamond(\omega_1)$. For background information we refer the reader to our paper [1].

It was open for several years whether \diamond implies that $\diamond(E)$ holds for any stationary set $E \subseteq \omega_1$. The main reason why it was thought by some that this was the case was that the proof of \diamond from V = L is almost identical to the proof of each instance of $\diamond(E)$ from V = L. However, it was finally proved by Shelah in [3] that it is possible for there to be disjoint stationary sets E and F such that $\diamond(E)$ holds (whence \diamond holds, of course) and $\diamond(F)$ fails. Shelah's proof uses a new forcing technique. We were subsequently able to find a proof using the well-known technique of iterated Souslin forcing. Our proof appears in [2].

Now, in both the Shelah proof and our proof mentioned above, one fixes a pair E, F of disjoint stationary sets in advance and then force to obtain $\diamond(E)$ and $\neg \diamond(F)$ in a boolean extension, keeping E and F stationary. Hence the two proofs do not tell us whether \diamond is strictly weaker than all *nontrivial* instances of $\diamond(E)$. Nontrivial? Well, it is clear that if $E \subseteq \omega_1$ contains a closed and unbounded set, then $\diamond(E)$ and \diamond are equivalent. But what if $E \subseteq \omega_1$ is both stationary and co-stationary? This is what we mean by the nontrivial case. In this paper we show that \diamond does in fact imply many "nontrivial" instances of $\diamond(E)$.

2. The result. Our proof depends upon the following result, which has been known to us for many years.

Let \mathcal{G} denote the set of all subsets, *E*, of ω_1 for which $\Diamond(E)$ fails.

2.1 LEMMA. \mathcal{G} is a countably complete ideal on ω_1 .

PROOF. Clearly, if $E \in \mathcal{G}$ and $F \subseteq E$, then $F \in \mathcal{G}$. We show that if

© American Mathematical Society 1978

Received by the editors October 6, 1977.

AMS (MOS) subject classifications (1970). Primary 02K99, 04A20.

Key words and phrases. $\diamond(E)$, stationary set, countably complete ideal, prime ideal.

$$E=\bigcup_{n=0}^{\infty}E_n,$$

where $E_n \in \mathcal{G}$, $n = 0, 1, 2, \ldots$, then $E \in \mathcal{G}$.

Let $\langle S_{\alpha} | \alpha \in E \rangle$ be such that $S_{\alpha} \subseteq \alpha$. We show that $\langle S_{\alpha} | \alpha \in E \rangle$ cannot be a $\diamond(E)$ sequence, which proves the lemma, of course.

Fix some bijection

$$j: \omega_1 \times \omega \leftrightarrow \omega_1,$$

such that whenever $\alpha \in \omega_1$ is a limit ordinal, then

 $j \upharpoonright (\alpha \times \omega): \alpha \times \omega \leftrightarrow \alpha.$

For $\alpha \in E$, $n \in \omega$, set

$$S_{\alpha}^{n} = \{\xi \in \alpha | j(\xi, n) \in S_{\alpha}\}.$$

Since $E_n \in \mathcal{G}$, $\langle S_{\alpha}^n | \alpha \in E_n \rangle$ is not a $\Diamond(E_n)$ -sequence, so we can find a set $X_n \subseteq \omega_1$ and a closed unbounded set $C_n \subseteq \omega_1$ such that

(i) $\alpha \in C_n \Rightarrow \lim(\alpha);$

(ii) $\alpha \in C_n \cap E_n \to X_n \cap \alpha \neq S_\alpha^n$.

Let $C = \bigcap_{n=0}^{\infty} C_n$. Then C is closed and unbounded in ω_1 and:

(iii) $\alpha \in C \rightarrow \lim(\alpha)$;

(iv) $\alpha \in C \cap E_n \to X_n \cap \alpha \neq S_\alpha^n$.

Define $X \subseteq \omega_1$ by $X = \{j(\xi, n) | \xi \in X_n\}$. We complete the proof by showing that

$$\alpha \in C \cap E \to X \cap \alpha \neq S_{\alpha}.$$

Let $\alpha \in C \cap E$. Pick *n* so that $\alpha \in E_n$. Suppose that $X \cap \alpha = S_{\alpha}$. Then, since $\lim(\alpha)$,

$$S_{\alpha}^{n} = \{\xi \in \alpha | j(\xi, n) \in S_{\alpha}\} = \{\xi \in \alpha | j(\xi, n) \in X \cap \alpha\}$$
$$= \{\xi \in \omega_{1} | j(\xi, n) \in X\} \cap \alpha$$
$$= X_{n} \cap \alpha, \quad \text{contrary to (iv).} \quad \Box$$

REMARK. Shelah has observed that \mathfrak{G} is in fact a normal ideal.

2.2 THEOREM. Assume $\diamond(E)$. Then there are disjoint stationary sets $F, G \subseteq E$ such that $\diamond(F)$ and $\diamond(G)$ both hold.

PROOF. Let

$$\mathfrak{G}_E = \{ E \cap F | F \in \mathfrak{G} \}.$$

By 2.1, \mathfrak{G}_E is a countably complete ideal on E. Since $\diamond(E)$ holds, \mathfrak{G}_E is clearly nonprincipal. Since ω_1 is not a measurable cardinal (i.e. since we know that ω_1 cannot carry a nonprincipal, countably complete *prime* ideal) there must be a set $F \subseteq E$ such that $F, E - F \notin \mathfrak{G}_E$. Thus $\diamond(F)$ and $\diamond(E - F)$ hold. \square

We finish with two remarks. Firstly, since no countably complete ideal on ω_1 can be \aleph_1 -saturated, the above proof shows that, in fact, \diamond implies the existence of a family E_{α} , $\alpha < \omega_1$, of disjoint stationary sets such that $\diamond(E_{\alpha})$

164

holds for each α . Secondly, we may replace ω_1 in Theorem 2.2 by any uncountable regular cardinal κ . The proof is the same except when κ is a measurable cardinal. In this case we use the fact that no κ -complete prime ideal on κ can be second-order definable.

References

1. K. J. Devlin, Variations of \diamond , J. Symbolic Logic (to appear).

2. _____, Iterated Souslin forcing, the principles $\diamond(E)$, and a generalisation of the Axiom SAD, Israel J. Math. (to appear).

3. S. Shelah, Whitehead groups may be not free, even assuming CH. I, Israel J. Math. 28 (1977), 193-203.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF LANCASTER, LANCASTER, ENGLAND