
A Note on Complexity of Lp Minimization

Xiaoye Jiang∗ Yinyu Ye†

September 3, 2009

Abstract

We show that the Lp (0 ≤ p < 1) minimization problem arising from sparse
solution construction and compressed sensing is both hard and easy. More precisely,
for any fixed 0 < p < 1, we prove that checking the global minimal value of the
problem is NP-Hard; but computing a local minimizer of the problem is polynomial-
time doable.

1 Short Introduction

In this note, we consider the following optimization problem:

Minimize p(x) :=
∑

1≤j≤n

xp
j

Subject to Ax = b,
x ≥ 0,

(1)

and
Minimize

∑
1≤j≤n

|xj|p

Subject to Ax = b;
(2)

where data A ∈ Rm×n, b ∈ Rm, and 0 < p < 1.
Sparse signal or solution reconstruction by solving optimization problem (1) or (2),

especially for the cases of 0 ≤ p ≤ 1, recently received great attentions. In signal recon-
struction, one typically has linear measurements b = Ax∗ where x∗ is a sparse signal, and
the sparse signal would be recovered by solving inverse problem (1) or (2) with p = 0,
that is, to find the sparsest or smallest support cardinality solution of a linear system
(here |x|0 = 1 if x 6= 0 and 0 otherwise). From the computational complexity point of
view, when p = 0, problem (1) or (2) is shown to be NP-hard [6] to solve; when p = 1,
both problems are linear programs, hence they are polynomial-time solvable.
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In [1, 4], it was shown that if certain restricted isometry property holds for A, then
the solutions of (2) for p = 0 and p = 1 are identical. Hence, problem (2) with p = 0
can be relaxed to problem (2) with p = 1. However, restricted isometry property may be
too strong for practical basis design matrices A to hold. Thus, one may consider sparse
recovery by solving relaxation problem (1) or (2) for a fixed p, 0 < p < 1. Recently, this
approach has attracted a lot of research efforts in variable selection and sparse reconstruc-
tion, e.g., [5]. It exhibits desired threshold bounds on any non-zero entry of a computed
solution [3], and computational experiences show that by replacing p = 1 with a p < 1,
reconstruction can be done equally fast with many fewer measurements while being more
robust to noise and signal nonsparsity, e.g., [2].

In this note, we show that the Lp (0 ≤ p < 1) minimization problem is both hard and
easy. More precisely, for a given real number v, the question, “is there a feasible solution
to (1) or (2) such that its objective value less than or equal to v”, is NP-Hard to answer.
On the other hand, any basic (feasible) solution of (1) or (2) is a local minimizer, so that
computing a local minimizer of the problem is polynomial-time doable.

2 The Hardness

Theorem 1. For a given real number v, it is NP-hard to decide if the minimal objective
value of problem (1) is less than or equal to v.

Proof. We present a poly-time reduction from the well known NP-complete partition
problem. An instance of the partition problem can be described as follows: given a set
S of integers or rational numbers {a1, a2, . . . , an}, is there a way to partition S into two
disjoint subsets S1 and S2 such that the sum of the numbers in S1 equals the sum of the
numbers in S2?

Let vector a = (a1, a2, . . . , an) ∈ Rn. Then, we consider the following minimization
problem in form (1):

Minimize P (x, y) =
∑

1≤j≤n

(xp
j + yp

j )

Subject to aT (x− y) = 0,
xj + yj = 1, ∀j,

x, y ≥ 0.

(3)

From the strict concavity of the objective function,

xp
j + yp

j ≥ xj + yj = 1, ∀j,
and they are equal if and only if (xj = 1, yj = 0) or (xj = 0, yj = 1). Thus, P (x, y) ≥ n
for any (continuous) feasible solution of (3); and if there is a feasible solution pair (x, y)
such that P (x, y) ≤ n, it must be true xp

j + yp
j = 1 = xj + yj for all j so that (x, y) must

be a binary solution, (xj = 1, yj = 0) or (xj = 0, yj = 1), which generates an equitable
partition of the entries of a.

On the other hand, if the entries of a has an equitable partition, then (3) must have
a binary solution pair (x, y) such that P (x, y) = n. Therefore, it is NP-hard to decide if
there is a feasible solution (x, y) such that its objective value P (x, y) ≤ n.
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For the same partition problem, we consider the following minimization problem in
form (2):

Minimize
∑

1≤j≤n

(|xj|p + |yj|p)

Subject to aT (x− y) = 0,
xj + yj = 1, ∀j.

(4)

Note that this problem has no non-negativity constraints on variables (x, y). However,
for any feasible solution (x, y) of the problem, we still have

|xj|p + |yj|p ≥ xj + yj = 1, ∀j.
This is because when xj + yj = 1, the minimal value of |xj|p + |yj|p is 1, and it equals 1
if and only if (xj = 1, yj = 0) or (xj = 0, yj = 1). Thus, it remains NP-hard to decide if
there is a feasible solution (x, y) such that the objective value of (4) is less than or equal
to n. This leads to:

Theorem 2. For a given real number v, it is NP-hard to decide if the minimal objective
value of problem (2) is less than or equal to v.

Note that the L1 minimization of the reduced problem does not reveal much informa-
tion sparsity of the solution set, since any feasible solution is a (global) minimizer.

3 The Easiness

The above discussion reveals that finding a global minimizer for the Lp norm optimization
problem is NP-hard as long as p < 1. Thus, relaxing p = 0 to some p < 1 gains
no advantage in terms of the (worst-case) computational complexity. We now turn our
attention to local minimizers. Note that, for many optimization problems, finding a local
minimizer, or checking if a solution is a local minimizer, remains NP-hard. What about
local minimizers of problems (1) and (2)? The answer is that they are easy to find.

Theorem 3. The set of all basic feasible solutions of (1) is exactly the set of its all local
minimizers.

Proof. Observe that the objective function of (1) is strictly concave and its feasible region
is a convex polyhedral set.

If x is a basic feasible solution (or extreme point), then consider its ε(> 0) neighbor-
hood in the feasible region. Note that any other feasible solution in the neighborhood
must have one variable having a positive value less than ε and it is zero in x. However, the
derivative of εp can be arbitrarily large if ε is sufficiently small enough. This implies that
the value of the objective must be increased no matter which feasible direction one follows
when it starts from a basic feasible solution. Thus, x must be a strict local minimizer.

On the other hand, let x be a local minimizer but not a basic feasible solution (extreme
point). Then, x must be in the interior of a face of the convex polyhedral set. Thus, there
is a feasible direction d 6= 0 such that both x + εd and x− εd are feasible for sufficiently
small but positive ε. Since either d or −d will be a descent direction of the strict concave
objective function, x cannot be a local minimizer.
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Similarly, we can prove

Theorem 4. The set of all basic solutions of (2) is exactly the set of its all local mini-
mizers.

4 Interior-Point Algorithm

These local minimizer results show that there is little hope to solve (1) starting from a
basic feasible solution. Naturally, one would start from an interior-point feasible solution
such as the analytic center x0 of the feasible polytope (if it is bounded and has an interior
feasible point). Similar to potential reduction algorithms for linear programming, one
could consider the potential function

φ(x) = ρ log(
n∑

j=1

xp
j − z̄)− p

n∑
j=1

log xj = ρ log(p(x)− z̄)− p

n∑
j=1

log xj, (5)

where z̄ is a lower bound on the global minimal objective value of (1) and parameter
ρ > n. For simplicity, we set z̄ = 0 in the rest of discussion. Note now that

∑n
j=1 xp

j

n
≥

(
n∏

j=1

xp
j

)1/n

so that

n log(p(x))− p

n∑
j=1

log xj ≥ n log n.

Thus, if φ(x) ≤ (ρ − n) log(ε), we must have p(x) ≤ ε, which implies that x must be an
ε-global minimizer.

In a manner similar to the potential reduction algorithm discussed in [7] for non-
convex quadratic minimization, one can consider one-iteration update from x to x+. Let
dx, Adx = 0, be a vector such that x+ = x+dx > 0. Then, from the concavity of log(p(x)),
we have

log(p(x+))− log(p(x)) ≤ 1

p(x)
∇p(x)T dx.

On the other hand, if ‖X−1dx‖ ≤ β < 1, where X = Diag(x),

n∑
j=1

log(x+
j )−

n∑
j=1

log(xj) ≤ −eT X−1dx +
β2

2(1− β)
,

where e is the vector of all ones.
Let d′ = X−1dx. Then, to achieve a potential function, one can minimize an affine-

scaled linear function subject to a ball constraint as it is done for linear programming:

Minimize
(

ρ
p(x)

∇p(x)T − peT X−1
)

Xd′

Subject to AXd′ = 0
‖d′‖2 ≤ β2.

(6)
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This is simply a linear projection problem. If the minimal objective value of the subprob-
lem is less than −β, then

φ(x+)− φ(x) < −β +
β2

2(1− β)

where the potential value is reduced by a constant for setting β = 1/2. On the other
hand, if the minimal objective value of the subproblem is greater than or equal to −β,
then one can show that we must have an ε-stationary point after setting ρ = n

ε
. The

algorithm then will provably return an ε-stationary point of (1) in no more than O(n
ε
log 1

ε
)

iterations. A more careful computation will make the stationary point satisfy the second
order optimality condition; see [7]. Therefore, interior-point algorithms, including the
simple affine-scaling algorithm, can be effective in solving the Lp minimization problem
as well.
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