A Note on Complexity of L_{p} Minimization

Xiaoye Jiang* Yinyu Ye^{\dagger}

September 3, 2009

Abstract

We show that the $L_{p}(0 \leq p<1)$ minimization problem arising from sparse solution construction and compressed sensing is both hard and easy. More precisely, for any fixed $0<p<1$, we prove that checking the global minimal value of the problem is NP-Hard; but computing a local minimizer of the problem is polynomialtime doable.

1 Short Introduction

In this note, we consider the following optimization problem:

$$
\begin{array}{cc}
\text { Minimize } & p(x):=\sum_{1 \leq j \leq n} x_{j}^{p} \tag{1}\\
\text { Subject to } & A x=b, \\
& x \geq 0,
\end{array}
$$

and

$$
\begin{array}{lc}
\text { Minimize } & \sum_{1 \leq j \leq n}\left|x_{j}\right|^{p} \tag{2}\\
\text { Subject to } & A x=b ;
\end{array}
$$

where data $A \in R^{m \times n}, b \in R^{m}$, and $0<p<1$.
Sparse signal or solution reconstruction by solving optimization problem (1) or (2), especially for the cases of $0 \leq p \leq 1$, recently received great attentions. In signal reconstruction, one typically has linear measurements $b=A x^{*}$ where x^{*} is a sparse signal, and the sparse signal would be recovered by solving inverse problem (1) or (2) with $p=0$, that is, to find the sparsest or smallest support cardinality solution of a linear system (here $|x|^{0}=1$ if $x \neq 0$ and 0 otherwise). From the computational complexity point of view, when $p=0$, problem (1) or (2) is shown to be NP-hard [6] to solve; when $p=1$, both problems are linear programs, hence they are polynomial-time solvable.

[^0]In $[1,4]$, it was shown that if certain restricted isometry property holds for A, then the solutions of (2) for $p=0$ and $p=1$ are identical. Hence, problem (2) with $p=0$ can be relaxed to problem (2) with $p=1$. However, restricted isometry property may be too strong for practical basis design matrices A to hold. Thus, one may consider sparse recovery by solving relaxation problem (1) or (2) for a fixed $p, 0<p<1$. Recently, this approach has attracted a lot of research efforts in variable selection and sparse reconstruction, e.g., [5]. It exhibits desired threshold bounds on any non-zero entry of a computed solution [3], and computational experiences show that by replacing $p=1$ with a $p<1$, reconstruction can be done equally fast with many fewer measurements while being more robust to noise and signal nonsparsity, e.g., [2].

In this note, we show that the $L_{p}(0 \leq p<1)$ minimization problem is both hard and easy. More precisely, for a given real number v, the question, "is there a feasible solution to (1) or (2) such that its objective value less than or equal to v ", is NP-Hard to answer. On the other hand, any basic (feasible) solution of (1) or (2) is a local minimizer, so that computing a local minimizer of the problem is polynomial-time doable.

2 The Hardness

Theorem 1. For a given real number v, it is NP-hard to decide if the minimal objective value of problem (1) is less than or equal to v.
Proof. We present a poly-time reduction from the well known NP-complete partition problem. An instance of the partition problem can be described as follows: given a set S of integers or rational numbers $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, is there a way to partition S into two disjoint subsets S_{1} and S_{2} such that the sum of the numbers in S_{1} equals the sum of the numbers in S_{2} ?

Let vector $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in R^{n}$. Then, we consider the following minimization problem in form (1):

$$
\begin{array}{cc}
\text { Minimize } & P(x, y)=\sum_{1 \leq j \leq n}\left(x_{j}^{p}+y_{j}^{p}\right) \\
\text { Subject to } & a^{T}(x-y)=0, \tag{3}\\
x_{j}+y_{j}=1, \forall j, \\
x, y \geq 0 .
\end{array}
$$

From the strict concavity of the objective function,

$$
x_{j}^{p}+y_{j}^{p} \geq x_{j}+y_{j}=1, \forall j,
$$

and they are equal if and only if $\left(x_{j}=1, y_{j}=0\right)$ or ($x_{j}=0, y_{j}=1$). Thus, $P(x, y) \geq n$ for any (continuous) feasible solution of (3); and if there is a feasible solution pair (x, y) such that $P(x, y) \leq n$, it must be true $x_{j}^{p}+y_{j}^{p}=1=x_{j}+y_{j}$ for all j so that (x, y) must be a binary solution, $\left(x_{j}=1, y_{j}=0\right)$ or $\left(x_{j}=0, y_{j}=1\right)$, which generates an equitable partition of the entries of a.

On the other hand, if the entries of a has an equitable partition, then (3) must have a binary solution pair (x, y) such that $P(x, y)=n$. Therefore, it is NP-hard to decide if there is a feasible solution (x, y) such that its objective value $P(x, y) \leq n$.

For the same partition problem, we consider the following minimization problem in form (2):

$$
\begin{array}{cc}
\text { Minimize } & \sum_{1 \leq j \leq n}\left(\left|x_{j}\right|^{p}+\left|y_{j}\right|^{p}\right) \tag{4}\\
\text { Subject to } & a^{T}(x-y)=0, \\
& x_{j}+y_{j}=1, \forall j .
\end{array}
$$

Note that this problem has no non-negativity constraints on variables (x, y). However, for any feasible solution (x, y) of the problem, we still have

$$
\left|x_{j}\right|^{p}+\left|y_{j}\right|^{p} \geq x_{j}+y_{j}=1, \forall j .
$$

This is because when $x_{j}+y_{j}=1$, the minimal value of $\left|x_{j}\right|^{p}+\left|y_{j}\right|^{p}$ is 1 , and it equals 1 if and only if $\left(x_{j}=1, y_{j}=0\right)$ or $\left(x_{j}=0, y_{j}=1\right)$. Thus, it remains NP-hard to decide if there is a feasible solution (x, y) such that the objective value of (4) is less than or equal to n. This leads to:

Theorem 2. For a given real number v, it is NP-hard to decide if the minimal objective value of problem (2) is less than or equal to v.

Note that the L_{1} minimization of the reduced problem does not reveal much information sparsity of the solution set, since any feasible solution is a (global) minimizer.

3 The Easiness

The above discussion reveals that finding a global minimizer for the L_{p} norm optimization problem is NP-hard as long as $p<1$. Thus, relaxing $p=0$ to some $p<1$ gains no advantage in terms of the (worst-case) computational complexity. We now turn our attention to local minimizers. Note that, for many optimization problems, finding a local minimizer, or checking if a solution is a local minimizer, remains NP-hard. What about local minimizers of problems (1) and (2)? The answer is that they are easy to find.

Theorem 3. The set of all basic feasible solutions of (1) is exactly the set of its all local minimizers.

Proof. Observe that the objective function of (1) is strictly concave and its feasible region is a convex polyhedral set.

If x is a basic feasible solution (or extreme point), then consider its $\epsilon(>0)$ neighborhood in the feasible region. Note that any other feasible solution in the neighborhood must have one variable having a positive value less than ϵ and it is zero in x. However, the derivative of ϵ^{p} can be arbitrarily large if ϵ is sufficiently small enough. This implies that the value of the objective must be increased no matter which feasible direction one follows when it starts from a basic feasible solution. Thus, x must be a strict local minimizer.

On the other hand, let x be a local minimizer but not a basic feasible solution (extreme point). Then, x must be in the interior of a face of the convex polyhedral set. Thus, there is a feasible direction $d \neq 0$ such that both $x+\epsilon d$ and $x-\epsilon d$ are feasible for sufficiently small but positive ϵ. Since either d or $-d$ will be a descent direction of the strict concave objective function, x cannot be a local minimizer.

Similarly, we can prove
Theorem 4. The set of all basic solutions of (2) is exactly the set of its all local minimizers.

4 Interior-Point Algorithm

These local minimizer results show that there is little hope to solve (1) starting from a basic feasible solution. Naturally, one would start from an interior-point feasible solution such as the analytic center x^{0} of the feasible polytope (if it is bounded and has an interior feasible point). Similar to potential reduction algorithms for linear programming, one could consider the potential function

$$
\begin{equation*}
\phi(x)=\rho \log \left(\sum_{j=1}^{n} x_{j}^{p}-\bar{z}\right)-p \sum_{j=1}^{n} \log x_{j}=\rho \log (p(x)-\bar{z})-p \sum_{j=1}^{n} \log x_{j}, \tag{5}
\end{equation*}
$$

where \bar{z} is a lower bound on the global minimal objective value of (1) and parameter $\rho>n$. For simplicity, we set $\bar{z}=0$ in the rest of discussion. Note now that

$$
\frac{\sum_{j=1}^{n} x_{j}^{p}}{n} \geq\left(\prod_{j=1}^{n} x_{j}^{p}\right)^{1 / n}
$$

so that

$$
n \log (p(x))-p \sum_{j=1}^{n} \log x_{j} \geq n \log n
$$

Thus, if $\phi(x) \leq(\rho-n) \log (\epsilon)$, we must have $p(x) \leq \epsilon$, which implies that x must be an ϵ-global minimizer.

In a manner similar to the potential reduction algorithm discussed in [7] for nonconvex quadratic minimization, one can consider one-iteration update from x to x^{+}. Let $d_{x}, A d_{x}=0$, be a vector such that $x^{+}=x+d_{x}>0$. Then, from the concavity of $\log (p(x))$, we have

$$
\log \left(p\left(x^{+}\right)\right)-\log (p(x)) \leq \frac{1}{p(x)} \nabla p(x)^{T} d_{x}
$$

On the other hand, if $\left\|X^{-1} d_{x}\right\| \leq \beta<1$, where $X=\operatorname{Diag}(x)$,

$$
\sum_{j=1}^{n} \log \left(x_{j}^{+}\right)-\sum_{j=1}^{n} \log \left(x_{j}\right) \leq-e^{T} X^{-1} d_{x}+\frac{\beta^{2}}{2(1-\beta)}
$$

where e is the vector of all ones.
Let $d^{\prime}=X^{-1} d_{x}$. Then, to achieve a potential function, one can minimize an affinescaled linear function subject to a ball constraint as it is done for linear programming:

$$
\begin{array}{cc}
\text { Minimize } & \left(\frac{\rho}{p(x)} \nabla p(x)^{T}-p e^{T} X^{-1}\right) X d^{\prime} \\
\text { Subject to } & A X d^{\prime}=0 \tag{6}\\
\left\|d^{\prime}\right\|^{2} \leq \beta^{2}
\end{array}
$$

This is simply a linear projection problem. If the minimal objective value of the subproblem is less than $-\beta$, then

$$
\phi\left(x^{+}\right)-\phi(x)<-\beta+\frac{\beta^{2}}{2(1-\beta)}
$$

where the potential value is reduced by a constant for setting $\beta=1 / 2$. On the other hand, if the minimal objective value of the subproblem is greater than or equal to $-\beta$, then one can show that we must have an ϵ-stationary point after setting $\rho=\frac{n}{\epsilon}$. The algorithm then will provably return an ϵ-stationary point of (1) in no more than $O\left(\frac{n}{\epsilon} \log \frac{1}{\epsilon}\right)$ iterations. A more careful computation will make the stationary point satisfy the second order optimality condition; see [7]. Therefore, interior-point algorithms, including the simple affine-scaling algorithm, can be effective in solving the L_{p} minimization problem as well.

References

[1] Emmanuel. J. Candès and Terence Tao, "Decoding by linear programming", IEEE Transaction of Information Theory, 51(2005), 4203-4215.
[2] Rick Chartrand "Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data", in IEEE International Symposium on Biomedical Imaging (ISBI), 2009.
[3] Xiaojun Chen, Fengmin Xu and Yinyu Ye, "Lower Bound Theory of Nonzero Entries in Solutions of $\ell_{2}-\ell_{p}$ Minimization", Technical Report, The Hong Kong Polytechnic University, 2009.
[4] David Donoho, "For most large underdetermined systems of linear equations the minimal l_{1}-norm solution is also the sparsest Solution", Technical Report, Stanford University, 2004.
[5] Jianqing Fan and Runze Li, "Variable selection via nonconcave penalized likelihood and its oracle properties", Journal of American Statistical Society, 96(2001), 13481360.
[6] Balas K. Natarajan, "Sparse approximate solutions to linear systems", SIAM Journal on Computing, 24(1995), 227-234.
[7] Yinyu Ye, "On the complexity of approximating a KKT point of quadratic programming", Mathematical Programming, 80(1998), 195-211.

[^0]: *Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA 94305. E-mail: xiaoyej@stanford.edu
 ${ }^{\dagger}$ Department of Management Science and Engineering, Stanford University, Stanford, CA 94305. Email: yinyu-ye@stanford.edu

